Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Financial time series analysis: Chaos and neurodynamics approach
Högskolan Dalarna, Akademin Industri och samhälle, Datateknik.
2010 (engelsk)Independent thesis Basic level (degree of Bachelor)Oppgave
Abstract [en]

This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.

sted, utgiver, år, opplag, sider
Borlänge, 2010. , s. 61
Emneord [en]
Chaos, fractals, neural networks, cognitive process. time series, stock markets, finance, artificial intelligence, Hurst, Lyapunov, Takens Embedding Theorem, Monte Carlo simulation, predictive modeling
Identifikatorer
URN: urn:nbn:se:du-4810OAI: oai:dalea.du.se:4810DiVA, id: diva2:518883
Uppsök
Technology
Veileder
Tilgjengelig fra: 2010-06-10 Laget: 2010-06-10 Sist oppdatert: 2012-04-24bibliografisk kontrollert

Open Access i DiVA

fulltekst(1701 kB)1848 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1701 kBChecksum SHA-512
f9131c064f5ff1a38916c4e35ce65a35e6a4784d58a60e7216ecdfd47510a0c3cf5032000bdfe0d988e6ac970a230ad6c230fd919779a735c363589969610991
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1856 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1965 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf