Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Increased mitochondria uncoupling results in kidney tissue hypoxia and proteinuria.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi, Integrativ Fysiologi.
University of Tokyo.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi, Integrativ Fysiologi.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk cellbiologi, Integrativ Fysiologi.
Vise andre og tillknytning
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-167786OAI: oai:DiVA.org:uu-167786DiVA, id: diva2:488023
Tilgjengelig fra: 2012-02-01 Laget: 2012-02-01 Sist oppdatert: 2018-01-12
Inngår i avhandling
1. The Role of Mitochondrial Uncoupling in the Development of Diabetic Nephropathy
Åpne denne publikasjonen i ny fane eller vindu >>The Role of Mitochondrial Uncoupling in the Development of Diabetic Nephropathy
2012 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Diabetes is closely associated with increased oxidative stress, especially originating from the mitochondria. A mechanism to reduce increased mitochondria superoxide production is to reduce the mitochondria membrane potential by releasing protons across the mitochondria membrane. This phenomenon is referred to as mitochondria uncoupling since oxygen is consumed independently of ATP being produced and can be mediated by Uncoupling Proteins (UCPs). However, increased oxygen consumption is potentially detrimental for the kidney since it can cause tissue hypoxia. Therefore, this thesis aimed to investigate the role of mitochondria uncoupling for development of diabetic nephropathy.

     UCP-2 was demonstrated to be the only isoform expressed in the kidney, and localized to tubular segments performing the majority of tubular electrolyte transport. Streptozotocin-induced diabetes in rats increased UCP-2 protein expression and correlated to increased non-transport dependent oxygen consumption in isolated proximal tubular cells. These effects were prevented by intense insulin treatment to the diabetic animals demonstrating a pivotal role of hyperglycemia. Importantly, elevated UCP-2 protein expression increased mitochondria uncoupling in mitochondria isolated from diabetic kidneys. Mitochondria uncoupling and altered morphology was also evident in kidneys from db/db-mice, a model of type-2 diabetes, together with proteinuria and glomerular hyperfiltration which are both clinical manifestations of diabetic nephropathy. Treatment with the antioxidant coenzyme Q10 prevented mitochondria uncoupling as well as morphological and functional alterations in these kidneys. Acute knockdown of UCP-2 paradoxically increased mitochondria uncoupling in a mechanism involving the adenosine nucleotide transporter. Increased uncoupling via adenosine nucleotide transporter decreased mitochondria membrane potential and kidney oxidative stress but did not affect glomerular filtration rate, renal blood flow, total kidney oxygen consumption or intrarenal tissue oxygen tension.

     The role of increased mitochondria oxygen consumption was investigated by administering the chemical uncoupler dinitrophenol to healthy rats. Importantly, increased mitochondria oxygen consumption resulted in kidney tissue hypoxia, proteinuria and increased staining of the tubular injury marker vimentin, demonstrating a crucial role of increased oxygen consumption per se and the resulting kidney tissue hypoxia for the development of nephropathy.

     Taken together, the data presented in this thesis establishes an important role of mitochondria uncoupling for the development of diabetic nephropathy.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2012. s. 74
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 738
Emneord
Kidney, mitochondria, Uncoupling Protein-2, Adenosine Nucleotide Transporter, uncoupling, diabetes, diabetic nephropathy, db/db, dinitrophenol, Coenzyme Q10, oxygen, rats, mice
HSV kategori
Forskningsprogram
Fysiologi; Medicinsk cellbiologi
Identifikatorer
urn:nbn:se:uu:diva-167815 (URN)978-91-554-8266-4 (ISBN)
Disputas
2012-03-16, B42, Biomedical Center, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2012-02-24 Laget: 2012-02-01 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 516 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf