Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Recursive estimation of operational dynamic parameters in milling using acoustic signal
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi.ORCID-id: 0000-0001-9185-4607
KTH, Skolan för industriell teknik och management (ITM), Industriell produktion, Maskin- och processteknologi.ORCID-id: 0000-0001-6576-9281
2010 (engelsk)Inngår i: International Conference on Process Machine Interactions / [ed] Y. Altintas, Vancouver, 2010Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The key concept of the identification procedure in this paper is to find a feature of the measured random response (sound pressure) that can be used to discriminate between stable and unstable process-machine interaction (PMI) in milling. The dynamic condition of the machining system is represented by the operational dynamic parameters (ODP), which refer to the contribution of the structural vibration modes and process vibration modes resulting during machining system operation. It is shown that the sound pressure level acquired by a microphone, located in the machine’s working area, is able to follow rapid changes in the process dynamics and therefore may be used as input in the recursive estimation scheme. The primary contribution of this paper lies within the formulation and implementation of recursive parametric models for the study of the real-time dynamics of a face milling operation PMI. A comparison between the experimental, simulated, and identified results is outlined.

sted, utgiver, år, opplag, sider
Vancouver, 2010.
Emneord [en]
Milling, stability, recursive estimation, operational dynamic parameters
HSV kategori
Forskningsprogram
SRA - Produktion
Identifikatorer
URN: urn:nbn:se:kth:diva-27790OAI: oai:DiVA.org:kth-27790DiVA, id: diva2:382505
Konferanse
2nd International Conference on Process Machine Interactions, 10-11 June, 2010, Vancouver BC, Canada
Prosjekter
FFI Robust maskinbearbetning
Forskningsfinansiär
XPRES - Initiative for excellence in production research
Merknad
QC 20110126Tilgjengelig fra: 2011-01-26 Laget: 2010-12-31 Sist oppdatert: 2024-03-15bibliografisk kontrollert
Inngår i avhandling
1. A Computational Framework for Control of Machining System Capability: From Formulation to Implementation
Åpne denne publikasjonen i ny fane eller vindu >>A Computational Framework for Control of Machining System Capability: From Formulation to Implementation
2011 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Comprehensive knowledge and information about the static and dynamic behaviour of machine tools, cutting processes and their interaction is essential for machining system design, simulation, control and robust operation in safe conditions. The very complex system of a machine tool, fixture and cutting tools during the machining of a part is almost impossible to model analytically with sufficient accuracy. In combination with increasing demands for precision and efficiency in machining call for new control strategies for machining systems. These strategies need to be based on the identification of the static and dynamic stability under both the operational and off-operational conditions. To achieve this it is necessary to monitor and analyze the real system at the factory floor in full production. Design information and operational data can then be linked together to make a realistic digital model of a given machining system. Information from such a model can then be used as input in machining simulation software to find the root causes of instability.

The work presented in this thesis deals with the static and dynamic capability of machining systems. The main focus is on the operational stability of the machining system and structural behaviour of only the machine tool, as well.

When the accuracy of a machining system is measured by traditional techniques, effects from neither the static stiffness nor the cutting process are taken into account. This limits the applicability of these techniques for realistic evaluation of a machining system’s accuracy. The research presented in this thesis takes a different approach by introducing the concept of operational dynamic parameters. The concept of operational dynamic parameters entails an interaction between the structural elements of the machining systems and the process parameters. According to this concept, the absolute criterion of damping is used to evaluate the dynamic behaviour of a machining system. In contrast to the traditional theory, this methodology allows to determine the machining system's dynamic stability, in real time under operating conditions. This framework also includes an evaluation of the static deformations of a machine tool.  In this context, a novel concept of elastically linked system is introduced to account for the representation of the cutting force trough an elastic link that closes the force loop. In addition to the elastic link which behaves as a static element, a dynamic non-contact link has been introduced. The purpose is to study the non-linear effects introduced by variations of contact conditions in joints due to rotational speed.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2011. s. xv, 97
Serie
Trita-IIP, ISSN 1650-1888 ; 11:11
Emneord
Machining system, Stability, Statistical Dynamics, Elastic Linked System (ELS), Operational Dynamic Parameters (ODP), Loaded Double Ball Bar (LDBB), Virtual Machining System Engine (VMSE), Contactless Excitation and Response System (CERS).
HSV kategori
Forskningsprogram
SRA - Produktion
Identifikatorer
urn:nbn:se:kth:diva-48824 (URN)978-91-7501-162-2 (ISBN)
Disputas
2011-12-05, F3, Lindstedtsvägen 26, KTH, Stockholm, 09:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
XPRES - Initiative for excellence in production research
Merknad
QC 20111123Tilgjengelig fra: 2011-11-23 Laget: 2011-11-23 Sist oppdatert: 2022-06-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Archenti, AndreasNicolescu, Cornel Mihai
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 587 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf