Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Occupant classification using range images
KTH, Skolan för elektro- och systemteknik (EES), Signalbehandling. KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre.
IEE S.A., ZAE Weiergewan, 5326 Contern, Luxembourg.
IEE S.A., ZAE Weiergewan, 5326 Contern, Luxembourg.
IEE S.A., ZAE Weiergewan, 5326 Contern, Luxembourg.
Vise andre og tillknytning
2007 (engelsk)Inngår i: IEEE Transactions on Vehicular Technology, ISSN 0018-9545, E-ISSN 1939-9359, Vol. 56, nr 4, s. 1983-1993Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Static occupant classification is an important requirement in designing so-called smart airbags. Systems for this purpose can be either based on pressure sensors or vision sensors. Vision-based systems are advantageous over pressure-sensor-based systems as they can provide additional functionalities like dynamic occupant-position analysis or child-seat orientation detection. The focus of this paper is to evaluate and analyze static occupant classification using a low-resolution range sensor, which is based on the time-of-flight principle. This range sensor is advantageous, since it provides directly a dense range image that is independent of the ambient illumination conditions and object textures. Herein, the realization of an occupant-classification system, using a novel low-resolution range image sensor, is described, methods for extracting robust features from the range images are investigated, and different classification methods are evaluated for classifying occupants. Bayes quadratic classifier, Gaussian mixture-model classifier, and polynomial classifier are compared to a clustering-based linear-regression classifier using a polynomial kernel. The latter one shows improved results compared to the first-three classification methods. Full-scale tests have been conducted on a wide range of realistic situations with different adults and child seats in various postures and positions. The results prove the feasibility of low-resolution range images for the current application.

sted, utgiver, år, opplag, sider
IEEE , 2007. Vol. 56, nr 4, s. 1983-1993
Emneord [en]
clustering, polynomial classification, range imaging, real-time vision, three-dimensional object classification, time-of-flight principle, algorithms
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-16822DOI: 10.1109/tvt.2007.897645ISI: 000248282200007Scopus ID: 2-s2.0-34547912926OAI: oai:DiVA.org:kth-16822DiVA, id: diva2:334865
Merknad
QC 20100525Tilgjengelig fra: 2010-08-05 Laget: 2010-08-05 Sist oppdatert: 2017-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Devarakota, Pandu Ranga RaoOttersten, Björn
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Vehicular Technology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 45 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf