Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Kinetic pathways leading to layer-by-layer growth from hyperthermal atoms: A Multibillion time step molecular dynamics study
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik.
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik.
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Teoretisk Fysik.
Linköpings universitet, Tekniska högskolan. Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik.ORCID-id: 0000-0002-2837-3656
Vise andre og tillknytning
2007 (engelsk)Inngår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 76, s. 115418-115425Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We employ multibillion time step embedded-atom molecular dynamics simulations to investigate the homoepitaxial growth of Pt(111) from hyperthermal Pt atoms (EPt=0.2–50eV) using deposition fluxes approaching experimental conditions. Calculated antiphase diffraction intensity oscillations, based on adatom coverages as a function of time, reveal a transition from a three-dimensional multilayer growth mode with EPt<20eV to a layer-by-layer growth with EPt≥20eV. We isolate the effects of irradiation-induced processes and thermally activated mass transport during deposition in order to identify the mechanisms responsible for promoting layer-by-layer growth. Direct evidence is provided to show that the observed transition in growth modes is primarily due to irradiation-induced processes which occur during the 10ps following the arrival of each hyperthermal atom. The kinetic pathways leading to the transition involve both enhanced intralayer and interlayer adatom transport, direct incorporation of energetic atoms into clusters, and cluster disruption leading to increased terrace supersaturation.

sted, utgiver, år, opplag, sider
American Physical Society , 2007. Vol. 76, s. 115418-115425
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-38795DOI: 10.1103/PhysRevB.76.115418Lokal ID: 45667OAI: oai:DiVA.org:liu-38795DiVA, id: diva2:259644
Merknad

The previous status of this article was Manuscript.

Tilgjengelig fra: 2009-10-10 Laget: 2009-10-10 Sist oppdatert: 2017-12-13bibliografisk kontrollert
Inngår i avhandling
1. Molecular Dynamics Studies of Low-Energy Atom Impact Phenomena on Metal Surfaces during Crystal Growth
Åpne denne publikasjonen i ny fane eller vindu >>Molecular Dynamics Studies of Low-Energy Atom Impact Phenomena on Metal Surfaces during Crystal Growth
2006 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

It is a well-known fact in the materials science community that the use of low-energy atom impacts during thin film deposition is an effective tool for altering the growth behavior and for increasing the crystallinity of the films. However, the manner in which the incident atoms affect the growth kinetics and surface morphology is quite complicated and still not fully understood. This provides a strong incentive for further investigations of the interaction among incident atoms and surface atoms on the atomic scale. These impact-induced energetic events are non-equilibrium, transient processes which complete in picoseconds. The only accessible technique today which permits direct observation of these events is molecular dynamics (MD) simulations.

This thesis deals with MD simulations of low-energy atom impact phenomena on metal surfaces during crystal growth. Platinum is chosen as a model system given that it has seen extended use as a model surface over the past few decades, both in experiments and simulations. In MD, the classical equations of motion are solved numerically for a set of interacting atoms. The atomic interactions are calculated using the embedded atom method (EAM). The EAM is a semi-empirical, pair-functional interatomic potential based on density functional theory. This potential provides a physical picture that includes many-atom effects while retaining computational efficiency needed for larger systems.

Single adatoms residing on a surface constitute the smallest possible clusters and are the fundamental components controlling nucleation kinetics. Small two-dimensional clusters on a surface are the result of nucleation and are present during the early stages of growth. These surface structures are chosen as targets in the simulations (papers I and II) to provide further knowledge of the atomistic processes which occur during deposition, to investigate at which impact energies the different kinetic pathways open up, and how they may affect growth behavior. Some of the events observed are adatom scattering, dimer formation, cluster disruption, formation of three-dimensional clusters, and residual vacancy formation. Given the knowledge obtained, papers III and IV deal with growth of several layers with the aim to study the underlying mechanisms responsible for altering growth behavior and how the overall intra- and interlayer atomic migration can be controlled by low-energy atom impacts.

sted, utgiver, år, opplag, sider
Institutionen för fysik, kemi och biologi, 2006
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1028
Emneord
Molecular dynamics simulations, Low energy Ion irradiation, Atomistic processes, Thin film growth
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-7165 (URN)91-85523-56-9 (ISBN)
Disputas
2006-06-08, Planck, Physics Building, Campus Valla, Linköping, 10:15 (engelsk)
Opponent
Veileder
Merknad

On the day of the defence date the status of article II was Accepted.

Tilgjengelig fra: 2006-08-29 Laget: 2006-08-29 Sist oppdatert: 2017-01-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Adamovic, DraganChirita, ValeriuMünger, PeterHultman, Lars
Av organisasjonen
I samme tidsskrift
Physical Review B. Condensed Matter and Materials Physics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 519 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf