Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting Shunt Surgery Outcomes in Idiopathic Normal pressure Hydrocephalus using Machine Learning
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för biologisk grundutbildning. (Caramba research group)
2025 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Idiopathic Normal Pressure Hydrocephalus (iNPH) is a neurodegenerative disorder that targets people of older age groups. It is a result of abnormal cerebrospinal fluid (CSF) buildup. To combat that, iNPH can be treated with a shunt surgery. However, predicting the success of the surgery remains a challenge due to the variability in patient outcomes. This study explores the use of machine learning (ML) to predict post-surgical outcomes in iNPH patients by utilizing clinical data from the Swedish Hydrocephalus Quality Registry (SHQR). Several ML models were tested, including random forest, decision trees, logistic regression, support vector machines (SVM), k-nearest neighbors (KNN), and gradient boosting, with random forest chosen as the final model due to its ability to handle of missing data. The results indicate that while ML models provide promising predictions, challenges such as higher rates of missing data, variations in measurement methods across years, and limitations in the availability of further descriptive features for the input set affect model accuracy. The final model achieved an accuracy of 66% and a macro F1-score of 64%, demonstrating the potential of ML in predicting iNPH surgical outcomes but highlighting the need for further refinement.

sted, utgiver, år, opplag, sider
2025. , s. 62
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-553868OAI: oai:DiVA.org:uu-553868DiVA, id: diva2:1949904
Utdanningsprogram
Master Programme in Bioinformatics
Presentation
2025-02-27, Norbyvägen 16, Uppsala, 18:39 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2025-04-04 Laget: 2025-04-03 Sist oppdatert: 2025-04-04bibliografisk kontrollert

Open Access i DiVA

fulltext(3982 kB)55 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3982 kBChecksum SHA-512
b0be76f2de559e33253a6135981460d275f3976a8754f58df2207c38ab772b1e0feeaf540867e1b7c7b8867f6115c94350041f494337ff21b72a5cd090a74c10
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 55 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 329 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf