Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cerebral blood flow measurements with 15O-water PET using a non-invasive machine-learning-derived arterial input function
Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway;The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway.ORCID-id: 0000-0001-7747-9003
Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Radiologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi.ORCID-id: 0000-0001-8324-7399
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Landtblom: Neurologi.ORCID-id: 0000-0002-0580-8821
Vise andre og tillknytning
2021 (engelsk)Inngår i: Journal of Cerebral Blood Flow and Metabolism, ISSN 0271-678X, E-ISSN 1559-7016, Vol. 41, nr 9, s. 2229-2241Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Cerebral blood flow (CBF) can be measured with dynamic positron emission tomography (PET) of 15O-labeled water by using tracer kinetic modelling. However, for quantification of regional CBF, an arterial input function (AIF), obtained from arterial blood sampling, is required. In this work we evaluated a novel, non-invasive approach for input function prediction based on machine learning (MLIF), against AIF for CBF PET measurements in human subjects.

Twenty-five subjects underwent two 10 min dynamic 15O-water brain PET scans with continuous arterial blood sampling, before (baseline) and following acetazolamide medication. Three different image-derived time-activity curves were automatically segmented from the carotid arteries and used as input into a Gaussian process-based AIF prediction model, considering both baseline and acetazolamide scans as training data. The MLIF approach was evaluated by comparing AIF and MLIF curves, as well as whole-brain grey matter CBF values estimated by kinetic modelling derived with either AIF or MLIF.

The results showed that AIF and MLIF curves were similar and that corresponding CBF values were highly correlated and successfully differentiated before and after acetazolamide medication. In conclusion, our non-invasive MLIF method shows potential to replace the AIF obtained from blood sampling for CBF measurements using 15O-water PET and kinetic modelling.

sted, utgiver, år, opplag, sider
SAGE Publications Sage Publications, 2021. Vol. 41, nr 9, s. 2229-2241
Emneord [en]
Arterial input function, cerebral blood flow, Gaussian processes, kinetic modelling, machine learning, 15O-water PET
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-461516DOI: 10.1177/0271678x21991393ISI: 000681032300001PubMedID: 33557691OAI: oai:DiVA.org:uu-461516DiVA, id: diva2:1620258
Tilgjengelig fra: 2021-12-15 Laget: 2021-12-15 Sist oppdatert: 2024-01-15bibliografisk kontrollert

Open Access i DiVA

fulltext(958 kB)125 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 958 kBChecksum SHA-512
b2987a524ecd937557ee595c495a38554b90c93d6cdc524d914bccda93dc74e182686d207ccbdd9886b50085a15b6dbcbc488904f51386a6274e0e400d06f7e1
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Kuttner, SamuelLubberink, MarkTolf, AndreasBurman, JoachimAppel, LieuweAxelsson, Jan
Av organisasjonen
I samme tidsskrift
Journal of Cerebral Blood Flow and Metabolism

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 125 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 72 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf