Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detecting ADS-B spoofing attacks: using collected and simulated data
Linköpings universitet, Institutionen för datavetenskap.
Linköpings universitet, Institutionen för datavetenskap.
2021 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgaveAlternativ tittel
Insamling och simulering av ADS-B meddelanden för detektion av attacker (svensk)
Abstract [en]

In a time where general technology is progressing at a rapid rate, this thesis aims to present possible advancements to security in regard to air traffic communication. By highlighting how data can be extracted using simple hardware and open-source software the transparency and lack of authentication is showcased. The research is specifically narrowed down to discovering vulnerabilities of the ADS-B protocol in order to apply countermeasures. Through fetching live aircraft data with OpenSky-Network and through fetching simulated ADS-B attack data with OpenScope, this thesis develops a data set with both authentic and malicious ADS-B messages. The data set was cleaned in order to remove outliers and other improper data. A machine learning model was later trained with the data set in order to detect malicious ADS-B messages. With the use of Support Vector Machine (SVM), it was possible to produce a model that can detect four different types of aviation communications attacks as well as allow authentic messages to pass through the IDS. The finished model was able to detect incoming ADS-B attacks with an overall accuracy of 83.10%. 

sted, utgiver, år, opplag, sider
2021. , s. 29
Emneord [en]
ADS-B, ATC, Spoofing, Air Communication, OpenSky, OpenScope, Security, SVM, Machine Learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-179040ISRN: LIU-IDA/LITH-EX-G--21/072—SEOAI: oai:DiVA.org:liu-179040DiVA, id: diva2:1592064
Fag / kurs
Information Technology
Presentation
2021-06-03, Online, 08:15 (svensk)
Veileder
Examiner
Tilgjengelig fra: 2021-09-08 Laget: 2021-09-08 Sist oppdatert: 2021-09-08bibliografisk kontrollert

Open Access i DiVA

fulltext(3575 kB)1101 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3575 kBChecksum SHA-512
fa697e719e118424704ac6a7805e59407bdbb270e9a5f6a8023b3cd7fe80473d7d1f2da67ff60661fded211638a310a385c5aec91cb5f676c169998d79518e96
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1102 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 997 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf