Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Natural Language Interface for Querying Linked Data
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), Institutionen för matematik och datavetenskap (from 2013).
2020 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

The thesis introduces a proof of concept idea that could spark great interest from many industries. The idea consists of a remote Natural Language Interface (NLI), for querying Knowledge Bases (KBs). The system applies natural language technology tools provided by the Stanford CoreNLP, and queries KBs with the use of the query language SPARQL. Natural Language Processing (NLP) is used to analyze the semantics of a question written in natural language, and generates relational information about the question. With correctly defined relations, the question can be queried on KBs containing relevant Linked Data. The Linked Data follows the Resource Description Framework (RDF) model by expressing relations in the form of semantic triples: subject-predicate-object.

With our NLI, any KB can be understood semantically. By providing correct training data, the AI can learn to understand the semantics of the RDF data stored in the KB. The ability to understand the RDF data allows for the process of extracting relational information from questions about the KB. With the relational information, questions can be translated to SPARQL and be queried on the KB.

sted, utgiver, år, opplag, sider
2020. , s. 47
Emneord [en]
SPARQL, NLP, RDF, Semantic Web, Knowledge Base, Knowledge Graph
HSV kategori
Identifikatorer
URN: urn:nbn:se:kau:diva-78921OAI: oai:DiVA.org:kau-78921DiVA, id: diva2:1449614
Eksternt samarbeid
Redpill-Linpro
Fag / kurs
Computer Science
Utdanningsprogram
Engineering: Computer Engineering (300 ECTS credits)
Veileder
Examiner
Tilgjengelig fra: 2020-06-30 Laget: 2020-06-30 Sist oppdatert: 2020-06-30bibliografisk kontrollert

Open Access i DiVA

fulltext(558 kB)1383 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 558 kBChecksum SHA-512
b84444f004a3eb3acdaacacd6429c4297fe8a4f51f9eefb166a712076e7c345ba641a04d9992a66eeabbd4dce91ae9232fe9fc085752e364527c2bc0eedf20fa
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1383 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1027 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf