Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Expression Recognition Using the Periocular Region: A Feasibility Study
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-1400-346X
Högskolan i Halmstad, Akademin för informationsteknologi, Halmstad Embedded and Intelligent Systems Research (EIS), CAISR Centrum för tillämpade intelligenta system (IS-lab).ORCID-id: 0000-0002-4929-1262
RISE Viktoria, Gothenburg, Sweden.ORCID-id: 0000-0002-1043-8773
2018 (engelsk)Inngår i: Proceedings. The 14th International Conference on Signal Image Technology & Internet Based Systems: SITIS 2018 / [ed] DiBaja, G. S., Gallo, L., Yetongnon, K., Dipanda, A., CastrillonSantana, M., Chbeir, R., Institute of Electrical and Electronics Engineers (IEEE), 2018, s. 536-541Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper investigates the feasibility of using the periocular region for expression recognition. Most works have tried to solve this by analyzing the whole face. Periocular is the facial region in the immediate vicinity of the eye. It has the advantage of being available over a wide range of distances and under partial face occlusion, thus making it suitable for unconstrained or uncooperative scenarios. We evaluate five different image descriptors on a dataset of 1,574 images from 118 subjects. The experimental results show an average/overall accuracy of 67.0/78.0% by fusion of several descriptors. While this accuracy is still behind that attained with full-face methods, it is noteworthy to mention that our initial approach employs only one frame to predict the expression, in contraposition to state of the art, exploiting several order more data comprising spatial-temporal data which is often not available. ©2018 IEEE

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2018. s. 536-541
Emneord [en]
Expression Recognition, Emotion Recognition, Periocular Analysis, Periocular Descriptor
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-41501DOI: 10.1109/SITIS.2018.00087ISI: 000469258400076Scopus ID: 2-s2.0-85065903319ISBN: 978-1-5386-9385-8 (digital)ISBN: 978-1-5386-9386-5 (tryckt)OAI: oai:DiVA.org:hh-41501DiVA, id: diva2:1391031
Konferanse
14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS 2018), Las Palmas de Gran Canaria, Spain, November 26-29, 2018
Forskningsfinansiär
Swedish Research CouncilTilgjengelig fra: 2020-02-03 Laget: 2020-02-03 Sist oppdatert: 2020-02-03bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Alonso-Fernandez, FernandoBigun, JosefEnglund, Cristofer
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 10 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf