Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Comparative Study of Kernel Logistic Regression, Radial Basis Function Classifier, Multinomial Naïve Bayes, and Logistic Model Tree for Flash Flood Susceptibility Mapping
University of Transport Technology, Hanoi, Viet Nam.
Institute of Geological Sciences, Vietnam Academy of Sciences and Technology, Dong da, Hanoi, Viet Nam.
Faculty of Geography, VNU University of Science, Hanoi, Viet Nam.
School of Resources and Safety Engineering, Central South University, Changsha, China.
Vise andre og tillknytning
2020 (engelsk)Inngår i: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 12, nr 1, s. 1-21, artikkel-id 239Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Risk of flash floods is currently an important problem in many parts of Vietnam. In this study, we used four machine-learning methods, namely Kernel Logistic Regression (KLR), Radial Basis Function Classifier (RBFC), Multinomial Naïve Bayes (NBM), and Logistic Model Tree (LMT) to generate flash flood susceptibility maps at the minor part of Nghe An province of the Center region (Vietnam) where recurrent flood problems are being experienced. Performance of these four methods was evaluated to select the best method for flash flood susceptibility mapping. In the model studies, ten flash flood conditioning factors, namely soil, slope, curvature, river density, flow direction, distance from rivers, elevation, aspect, land use, and geology, were chosen based on topography and geo-environmental conditions of the site. For the validation of models, the area under Receiver Operating Characteristic (ROC), Area Under Curve (AUC), and various statistical indices were used. The results indicated that performance of all the models is good for generating flash flood susceptibility maps (AUC = 0.983–0.988). However, performance of LMT model is the best among the four methods (LMT: AUC = 0.988; KLR: AUC = 0.985; RBFC: AUC = 0.984; and NBM: AUC = 0.983). The present study would be useful for the construction of accurate flash flood susceptibility maps with the objectives of identifying flood-susceptible areas/zones for proper flash flood risk management.

sted, utgiver, år, opplag, sider
Switzerland: MDPI, 2020. Vol. 12, nr 1, s. 1-21, artikkel-id 239
Emneord [en]
flash flood, kernel logistic regression, radial basis function network, multinomial naïve
HSV kategori
Forskningsprogram
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-77419DOI: 10.3390/w12010239ISI: 000519847200239Scopus ID: 2-s2.0-85079492140OAI: oai:DiVA.org:ltu-77419DiVA, id: diva2:1385815
Merknad

Validerad;2020;Nivå 2;2020-01-24 (johcin)

Tilgjengelig fra: 2020-01-15 Laget: 2020-01-15 Sist oppdatert: 2020-04-28bibliografisk kontrollert

Open Access i DiVA

fulltext(9988 kB)31 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 9988 kBChecksum SHA-512
84a0a7cbe0dad490bf366a2ef96b192db2308e065d1c7d4b84deba58f0e15df76b5c777db9115adcd442e104cc1ba703498e025ecc7d55701b0f32cd7c27d8e5
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Al-Ansari, Nadhir
Av organisasjonen
I samme tidsskrift
Water

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 31 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 101 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf