Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An evaluation of automated methods for hate detection
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi.
2019 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Derogatory, foul, hateful and/or prejudiced comments or even threats directed at other individuals have become a common phenomenon in many digital environments. This is a problem that effects many levels of society, and being able to battle it is therefore of utmost importance. The large amount of data created every day creates a need for well working automatic methods for detecting this type of content. The subjective na- ture of hate, as well as the diversity of how it can be expressed, however, makes the creation of such methods somewhat difficult. In this thesis three different automated methods, developed by the Swedish defence research agency (FOI), for hate detection in texts have been evaluated. To aid in the evaluation of these methods and the disambiguation of hate as a concept, an attempt at defining hate based on psychology literature has also been made. The methods are tested using two different data sets: one handpicked set of comments aimed to test the variety in each methods hate detecting ability, as well as one in-the-wild-set aimed at testing the methods performances in a scenario of realistic application. The result shows a major difference of performance based on the set the methods are tested on. As well as the possible improvements that can be made to each method and the weaknesses of each approach, the re- sult shows the difficulty of creating reliable methods for automated hate detection in general.

sted, utgiver, år, opplag, sider
2019. , s. 48
Serie
IT ; 19029
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-398224OAI: oai:DiVA.org:uu-398224DiVA, id: diva2:1375031
Utdanningsprogram
Bachelor Programme in Computer Science
Veileder
Examiner
Tilgjengelig fra: 2019-12-03 Laget: 2019-12-03 Sist oppdatert: 2019-12-03bibliografisk kontrollert

Open Access i DiVA

fulltext(513 kB)23 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 513 kBChecksum SHA-512
73c1a9ef62c986fd8ce616bf9aa28ae9b9e518bc01c13d36b4c6bebdfdb53313dcab4de963115bddebd427bc3d0493b5d88918300e1ab4ee1c4aa5d7f14330f6
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 23 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 14 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf