Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Network Anomaly Detection and Root Cause Analysis with Deep Generative Models
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi.
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

The project's objective is to detect network anomalies happening in a telecommunication network due to hardware malfunction or software defects after a vast upgrade on the network's system over a specific area, such as a city. The network's system generates statistical data at a 15-minute interval for different locations in the area of interest. For every interval, all statistical data generated over an area are aggregated and converted to images. In this way, an image represents a snapshot of the network for a specific interval, where statistical data are represented as points having different density values. To that problem, this project makes use of Generative Adversarial Networks (GANs), which learn a manifold of the normal network pattern. Additionally, mapping from new unseen images to the learned manifold results in an anomaly score used to detect anomalies. The anomaly score is a combination of the reconstruction error and the learned feature representation. Two models for detecting anomalies are used in this project, AnoGAN and f-AnoGAN. Furthermore, f-AnoGAN uses a state-of-the-art approach called Wasstestein GAN with gradient penalty, which improves the initial implementation of GANs. Both quantitative and qualitative evaluation measurements are used to assess GANs models, where F1 Score and Wasserstein loss are used for the quantitative evaluation and linear interpolation in the hidden space for qualitative evaluation. Moreover, to set a threshold, a prediction model used to predict the expected behaviour of the network for a specific interval. Then, the predicted behaviour is used over the anomaly detection model to define a threshold automatically. Our experiments were implemented successfully for both prediction and anomaly detection models. We additionally tested known abnormal behaviours which were detected and visualised. However, more research has to be done over the evaluation of GANs, as there is no universal approach to evaluate them.

sted, utgiver, år, opplag, sider
2019. , s. 102
Serie
IT ; 19077
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-397367OAI: oai:DiVA.org:uu-397367DiVA, id: diva2:1371317
Utdanningsprogram
Master Programme in Computer Science
Veileder
Examiner
Tilgjengelig fra: 2019-11-19 Laget: 2019-11-19 Sist oppdatert: 2019-11-19bibliografisk kontrollert

Open Access i DiVA

fulltext(3469 kB)35 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3469 kBChecksum SHA-512
db00606fbd0c1d3e925f7473f320031e68ffd1b5da50b3aaa23c6b8c58a12b1942715aa71427d443b8a00bf292fa532ac0504ebc7921167d3e63d68cc60ddf6e
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 35 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 154 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf