Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
EFFICIENT SCALES OF MICROSERVICE-ORIENTED SYSTEMS A comparison of evolutionary algorithms
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
2019 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 20 poäng / 30 hpOppgave
Abstract [en]

Many modern soft‰ware systems are designed into a microservice-oriented architecture as they run into issues when a‹ttempting to scale. An issue with large and complex microservice-oriented systems is to know which scales of a system that are well-performing with regard to resource usage. Identifying effcient scales is interesting to minimize resource usage and cost while maximizing performance.‘

The optimal scales of a demo system is investigated using multi-objective Ant Colony and Particle Swarm optimization. Th‘e optimization methods are evaluated and compared with respect to properties of the resulting set of scales, and how much of the search space that is discovered for the solutions to be produced.‘

The experiments show that Ant Colony is more consistent in producing the entire correct set of scales. Particle Swarm however is cheaper with regard to the number of scales that need to be tested in order to produce a result. Since testing a scale becomes more expensive as the investigated system grows in size and complexity, an initial conclusion is that Particle Swarm would be more viable for a real-world scenario. ‘There are however some ideas of improvements that could a‚ffect the conclusions, and a larger and more complex system should be tested as well before any real conclusions can be made.

sted, utgiver, år, opplag, sider
2019. , s. 40
Serie
UMNAD ; 1217
HSV kategori
Identifikatorer
URN: urn:nbn:se:umu:diva-165166OAI: oai:DiVA.org:umu-165166DiVA, id: diva2:1369604
Eksternt samarbeid
Nasdaq
Utdanningsprogram
Master of Science Programme in Computing Science and Engineering
Veileder
Examiner
Tilgjengelig fra: 2019-11-12 Laget: 2019-11-12 Sist oppdatert: 2019-11-12bibliografisk kontrollert

Open Access i DiVA

fulltext(946 kB)19 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 946 kBChecksum SHA-512
5373b697717614f07fc4f69a07bf086e1e647da7f1502d8f57ea97a9d3b38d26a865f5af5ba71dcdbcf1782b45ef12ee63bc48ee5930ab841213f9118a0dde4f
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 19 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 73 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf