Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Digits-Recognition Convolutional Neural Network on FPGA
Linköpings universitet, Institutionen för systemteknik, Datorteknik.
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Ett faltningsbaserat neuralt nätverk för sifferigenkänning på FPGA (svensk)
Abstract [en]

A convolutional neural network (CNN) is a deep learning framework that is widely used in computer vision. A CNN extracts important features of input images by perform- ing convolution and reduces the parameters in the network by applying pooling operation. CNNs are usually implemented with programming languages and run on central process- ing units (CPUs) and graphics processing units (GPUs). However in recent years, research has been conducted to implement CNNs on field-programmable gate array (FPGA).

The objective of this thesis is to implement a CNN on an FPGA with few hardware resources and low power consumption. The CNN we implement is for digits recognition. The input of this CNN is an image of a single digit. The CNN makes inference on what number it is on that image. The performance and power consumption of the FPGA is compared with that of a CPU and a GPU.

The results show that our FPGA implementation has better performance than the CPU and the GPU, with respect to runtime, power consumption, and power efficiency.

sted, utgiver, år, opplag, sider
2019. , s. 37
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-161663ISRN: LiTH-ISY-EX--19/5264--SEOAI: oai:DiVA.org:liu-161663DiVA, id: diva2:1367984
Fag / kurs
Electrical Engineering
Presentation
2019-10-08, Transformen, Linkoping University, Linkoping, 11:00 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2019-11-05 Laget: 2019-11-05 Sist oppdatert: 2019-11-05bibliografisk kontrollert

Open Access i DiVA

fulltext(985 kB)30 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 985 kBChecksum SHA-512
2054d2b0ac35233cabb0fbdfff6b032668be08c5a3531d66be5d590dc221953d69884aefe889374bd3647599a1b8897c8769648e496d11ba40cc0384fd95348d
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Wang, Zhenyu
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 30 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 113 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf