Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Precise Image-Based Measurements through Irregular Sampling
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion.ORCID-id: 0000-0002-0612-558x
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)Alternativ tittel
Noggranna bildbaserade mätningar via irreguljär sampling (svensk)
Fritextbeskrivning
Abstract [en]

Mathematical morphology is a theory that is applicable broadly in signal processing, but in this thesis we focus mainly on image data. Fundamental concepts of morphology include the structuring element and the four operators: dilation, erosion, closing, and opening. One way of thinking about the role of the structuring element is as a probe, which traverses the signal (e.g. the image) systematically and inspects how well it "fits" in a certain sense that depends on the operator.

Although morphology is defined in the discrete as well as in the continuous domain, often only the discrete case is considered in practice. However, commonly digital images are a representation of continuous reality and thus it is of interest to maintain a correspondence between mathematical morphology operating in the discrete and in the continuous domain. Therefore, much of this thesis investigates how to better approximate continuous morphology in the discrete domain. We present a number of issues relating to this goal when applying morphology in the regular, discrete case, and show that allowing for irregularly sampled signals can improve this approximation, since moving to irregularly sampled signals frees us from constraints (namely those imposed by the sampling lattice) that harm the correspondence in the regular case. The thesis develops a framework for applying morphology in the irregular case, using a wide range of structuring elements, including non-flat structuring elements (or structuring functions) and adaptive morphology. This proposed framework is then shown to better approximate continuous morphology than its regular, discrete counterpart.

Additionally, the thesis contains work dealing with regularly sampled images using regular, discrete morphology and weighting to improve results. However, these cases can be interpreted as specific instances of irregularly sampled signals, thus naturally connecting them to the overarching theme of irregular sampling, precise measurements, and mathematical morphology.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2019. , s. 63
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1869
Emneord [en]
image analysis, image processing, mathematical morphology, irregular sampling, adaptive morphology, missing samples, continuous morphology, path opening.
HSV kategori
Forskningsprogram
Datoriserad bildbehandling
Identifikatorer
URN: urn:nbn:se:uu:diva-395205ISBN: 978-91-513-0783-1 (tryckt)OAI: oai:DiVA.org:uu-395205DiVA, id: diva2:1361810
Disputas
2019-12-06, Room 2446, ITC, Lägerhyddsvägen 2, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish Research Council, 2014-5983Tilgjengelig fra: 2019-11-13 Laget: 2019-10-17 Sist oppdatert: 2019-11-13
Delarbeid
1. Mathematical morphology on irregularly sampled data in one dimension
Åpne denne publikasjonen i ny fane eller vindu >>Mathematical morphology on irregularly sampled data in one dimension
2017 (engelsk)Inngår i: Mathematical Morphology - Theory and Applications, ISSN 2353-3390, Vol. 2, nr 1, s. 1-24Artikkel i tidsskrift (Fagfellevurdert) Published
HSV kategori
Forskningsprogram
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-337288 (URN)10.1515/mathm-2017-0001 (DOI)
Forskningsfinansiär
Swedish Research Council, 2014-5983
Tilgjengelig fra: 2017-12-29 Laget: 2017-12-21 Sist oppdatert: 2019-10-17bibliografisk kontrollert
2. Mathematical Morphology on Irregularly Sampled Signals
Åpne denne publikasjonen i ny fane eller vindu >>Mathematical Morphology on Irregularly Sampled Signals
2017 (engelsk)Inngår i: Computer Vision – ACCV 2016 Workshops. ACCV 2016, Springer, 2017, Vol. 10117, s. 506-520Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper introduces a new operator that can be used to approximate continuous-domain mathematical morphology on irregularly sampled surfaces. We define a new way of approximating the continuous domain dilation by duplicating and shifting samples according to a flat continuous structuring element. We show that the proposed algorithm can better approximate continuous dilation, and that dilations may be sampled irregularly to achieve a smaller sampling without greatly compromising the accuracy of the result.

sted, utgiver, år, opplag, sider
Springer, 2017
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 10117
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-309921 (URN)10.1007/978-3-319-54427-4_37 (DOI)000426193700037 ()978-3-319-54427-4 (ISBN)978-3-319-54426-7 (ISBN)
Konferanse
13th Asian Conference on Computer Vision (ACCV), Taipei, Taiwan, November 20-24, 2016
Forskningsfinansiär
Swedish Research Council, 2014-5983
Tilgjengelig fra: 2016-12-08 Laget: 2016-12-08 Sist oppdatert: 2019-10-17bibliografisk kontrollert
3. Mathematical Morphology on Irregularly Sampled Data Applied to Segmentation of 3D Point Clouds of Urban Scenes
Åpne denne publikasjonen i ny fane eller vindu >>Mathematical Morphology on Irregularly Sampled Data Applied to Segmentation of 3D Point Clouds of Urban Scenes
Vise andre…
2019 (engelsk)Inngår i: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, 2019Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper proposes an extension of mathematical morphology on irregularly sampled signals to 3D point clouds. The proposed method is applied to the segmentation of urban scenes to show its applicability to the analysis of point cloud data. Applying the proposed operators has the desirable side-effect of homogenizing signals that are sampled heterogeneously. In experiments we show that the proposed segmentation algorithm yields good results on the Paris-rue-Madame database and is robust in terms of sampling density, i.e. yielding similar labelings for more sparse samplings of the same scene.

HSV kategori
Forskningsprogram
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-388524 (URN)10.1007/978-3-030-20867-7_29 (DOI)978-3-030-20866-0 (ISBN)978-3-030-20867-7 (ISBN)
Konferanse
International Symposium on Mathematical Morphology (ISMM 2019)
Forskningsfinansiär
Swedish Research Council, 2014-5983
Tilgjengelig fra: 2019-07-01 Laget: 2019-07-01 Sist oppdatert: 2019-10-17
4. Adaptive Mathematical Morphology on Irregularly Sampled Signals in Two Dimensions
Åpne denne publikasjonen i ny fane eller vindu >>Adaptive Mathematical Morphology on Irregularly Sampled Signals in Two Dimensions
(engelsk)Inngår i: Artikkel i tidsskrift (Fagfellevurdert) Submitted
HSV kategori
Forskningsprogram
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-395204 (URN)
Forskningsfinansiär
Swedish Research Council, 2014-5983
Tilgjengelig fra: 2019-10-15 Laget: 2019-10-15 Sist oppdatert: 2019-10-25
5. Estimating the Gradient for Images with Missing Samples Using Elliptical Structuring Elements
Åpne denne publikasjonen i ny fane eller vindu >>Estimating the Gradient for Images with Missing Samples Using Elliptical Structuring Elements
(engelsk)Inngår i: Artikkel i tidsskrift (Fagfellevurdert) Submitted
HSV kategori
Forskningsprogram
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-395200 (URN)
Forskningsfinansiär
Swedish Research Council, 2014-5983
Tilgjengelig fra: 2019-10-15 Laget: 2019-10-15 Sist oppdatert: 2019-10-25
6. A Faster, Unbiased Path Opening by Upper Skeletonization and Weighted Adjacency Graphs
Åpne denne publikasjonen i ny fane eller vindu >>A Faster, Unbiased Path Opening by Upper Skeletonization and Weighted Adjacency Graphs
2016 (engelsk)Inngår i: IEEE Transactions on Image Processing, ISSN 1057-7149, E-ISSN 1941-0042, Vol. 25, nr 12, s. 5589-5600Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The path opening is a filter that preserves bright regions in the image in which a path of a certain length L fits. A path is a (not necessarily straight) line defined by a specific adjacency relation. The most efficient implementation known scales as O(min(L, d, Q)N) with the length of the path, L, the maximum possible path length, d, the number of graylevels, Q, and the image size, N. An approximation exists (parsimonious path opening) that has an execution time independent of path length. This is achieved by preselecting paths, and applying 1D openings along these paths. However, the preselected paths can miss important structures, as described by its authors. Here, we propose a different approximation, in which we preselect paths using a grayvalue skeleton. The skeleton follows all ridges in the image, meaning that no important line structures will be missed. An H-minima transform simplifies the image to reduce the number of branches in the skeleton. A graph-based version of the traditional path opening operates only on the pixels in the skeleton, yielding speedups up to one order of magnitude, depending on image size and filter parameters. The edges of the graph are weighted in order to minimize bias. Experiments show that the proposed algorithm scales linearly with image size, and that it is often slightly faster for longer paths than for shorter paths. The algorithm also yields the most accurate results- as compared with a number of path opening variants-when measuring length distributions.

Emneord
graph theory, image filtering, transforms, 1D openings, H-minima transform, filter parameters, graph edges, grayvalue skeleton, image analysis, image filtering, image size, unbiased path opening, upper skeletonization, weighted adjacency graphs, Approximation algorithms, Gray-scale, Image edge detection, Length measurement, Periodic structures, Skeleton, Transforms, Path opening, granulometry, image analysis, length distribution, line segment, mathematical morphology, unbiased
HSV kategori
Forskningsprogram
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-309087 (URN)10.1109/TIP.2016.2609805 (DOI)000388205100007 ()
Forskningsfinansiär
Swedish Research Council, 2014-5983
Tilgjengelig fra: 2016-12-02 Laget: 2016-12-02 Sist oppdatert: 2019-10-17bibliografisk kontrollert

Open Access i DiVA

fulltext(3059 kB)67 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3059 kBChecksum SHA-512
ee4a1d2cc7ad5025a03a5c6587d562ed0c57bb7739c60adf6d37cd8a11031b3790b7a80d4f0f5885ac1209199bc278d913ff44c0ee20a58f055e0c6b2ebb9e89
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Asplund, Teo
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 67 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 867 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf