Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
CO2 Flow Estimation using Sidestream Capnography and Patient Flow in Anaesthesia Delivery Systems
KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
CO2-estimering genom Sidestream kapnografi och patientflöde i anestesisystem (svensk)
Abstract [en]

Volumetric CO2 data from patients in anaesthesia delivery systems are sought after by physicians. The CO2 data obtained with the commonly used sidestream sampling technique are not considered adequate for volumetric CO2 estimation due to distortion and desynchrony with patient flow. The purpose of this thesis was to explore the possibility of using signal enhancing methods to the sidestream data to accurately estimate CO2 flow using a Flow-i anaesthesia delivery system.

To evaluate sidestream performance, experimental data was acquired using a mainstream and a sidestream capnograph connected in series to a FRC test lung with known CO2 content, ventilated by a Flow-i anaesthesia machine. The data was then enhanced and analysed using signal processing methods including sigmoid modelling and neural networks.

A Feed Forward Neural Network achieved results closest resembling the mainstream capnogram of the evaluated signal processing methods. The mainstream capnogram, considered the benchmark, produced large internal scattering and approximately 25 % offset from actual CO2 flow while using the inherent patient flow data produced by the Flow-i anaesthesia system. When using patient flow data from a Servo-i ventilator, the resulting CO2 flow estimates were drastically improved, producing estimates within 10 % error.

This thesis concludes that there are several potential processing methods of the sidestream data to approximate the mainstream signal, however the patient flow of the Flow-i system are a suspected source of error in the CO2 flow estimation.

sted, utgiver, år, opplag, sider
2019. , s. 68
Serie
TRITA-CBH-GRU ; 2019:118
Emneord [en]
Capnography, Sidestream, Mainstream, CO2, estimation, neural network, flow, volumetric capnography, ETCO2
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-261664OAI: oai:DiVA.org:kth-261664DiVA, id: diva2:1359580
Eksternt samarbeid
Maquet Critical Care AB
Fag / kurs
Medical Engineering
Utdanningsprogram
Master of Science - Medical Engineering
Veileder
Examiner
Tilgjengelig fra: 2019-10-10 Laget: 2019-10-09 Sist oppdatert: 2022-06-26bibliografisk kontrollert

Open Access i DiVA

Erik_Micski_Thesis(5002 kB)841 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5002 kBChecksum SHA-512
e343ece46d794e50963d29bbbd9b152227f70ec4492f287866dc308a3b1c647051eca05b41c349c64a93998e392afeefd2e467cbe47167dd1c68bf86ee8f4514
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 841 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 825 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf