Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Real-time object detection for autonomous vehicles using deep learning
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi.
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Self-driving systems are commonly categorized into three subsystems: perception, planning, and control. In this thesis, the perception problem is studied in the context of real-time object detection for autonomous vehicles. The problem is studied by implementing a cutting-edge real-time object detection deep neural network called Single Shot MultiBox Detector which is trained and evaluated on both real and virtual driving-scene data. The results show that modern real-time capable object detection networks achieve their fast performance at the expense of detection rate and accuracy. The Single Shot MultiBox Detector network is capable of processing images at over fifty frames per second, but scored a relatively low mean average precision score on a diverse driving- scene dataset provided by Berkeley University. Further development in both hardware and software technologies will presumably result in a better trade-off between run-time and detection rate. However, as the technologies stand today, general real-time object detection networks do not seem to be suitable for high precision tasks, such as visual perception for autonomous vehicles. Additionally, a comparison is made between two versions of the Single Shot MultiBox Detector network, one trained on a virtual driving-scene dataset from Ford Center for Autonomous Vehicles, and one trained on a subset of the earlier used Berkeley dataset. These results show that synthetic driving scene data possibly could be an alternative to real-life data when training object detecting networks

sted, utgiver, år, opplag, sider
2019. , s. 111
Serie
IT ; 19007
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-393999OAI: oai:DiVA.org:uu-393999DiVA, id: diva2:1356309
Utdanningsprogram
Master Programme in Computer Science
Veileder
Examiner
Tilgjengelig fra: 2019-10-01 Laget: 2019-10-01 Sist oppdatert: 2019-10-01bibliografisk kontrollert

Open Access i DiVA

fulltext(8533 kB)13034 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 8533 kBChecksum SHA-512
f96dba1e62e5ed70fcc5cc80b2ef81accc1173725d7032741f65da705fd0374a75a67e96fa7af5a16df4975785b1bf16d633bf46d63398ed34f7ddf08c527de9
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 13041 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 2039 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf