Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A natural language processing solution to probable Alzheimer’s disease detection in conversation transcripts
Högskolan Kristianstad, Fakulteten för naturvetenskap.
2019 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

This study proposes an accuracy comparison of two of the best performing machine learning algorithms in natural language processing, the Bayesian Network and the Long Short-Term Memory (LSTM) Recurrent Neural Network, in detecting Alzheimer’s disease symptoms in conversation transcripts. Because of the current global rise of life expectancy, the number of seniors affected by Alzheimer’s disease worldwide is increasing each year. Early detection is important to ensure that affected seniors take measures to relieve symptoms when possible or prepare plans before further cognitive decline occurs. Literature shows that natural language processing can be a valid tool for early diagnosis of the disease. This study found that mild dementia and possible Alzheimer’s can be detected in conversation transcripts with promising results, and that the LSTM is particularly accurate in said detection, reaching an accuracy of 86.5% on the chosen dataset. The Bayesian Network classified with an accuracy of 72.1%. The study confirms the effectiveness of a natural language processing approach to detecting Alzheimer’s disease.

sted, utgiver, år, opplag, sider
2019. , s. 54
Emneord [en]
Bayesian network, long short-term memory recurrent neural network, machine learning, natural language processing, Alzheimer's disease, early detection
HSV kategori
Identifikatorer
URN: urn:nbn:se:hkr:diva-19889OAI: oai:DiVA.org:hkr-19889DiVA, id: diva2:1347038
Eksternt samarbeid
Sigma Connectivity
Utdanningsprogram
Bachelor programme in Computer Software Development
Veileder
Examiner
Tilgjengelig fra: 2019-08-30 Laget: 2019-08-29 Sist oppdatert: 2019-08-30bibliografisk kontrollert

Open Access i DiVA

fulltext(1679 kB)720 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1679 kBChecksum SHA-512
a1101fedd0f8696ca3c2909b9c991815bec9665ad5233195c6846cd26e03b739dcf2d0640b22b5a6868ae18bd9d8fbcb2e652b65b60cd99a3127055e34f3c34e
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 720 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 2232 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf