Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Image Based Flow Path Recognition for Chromatography Equipment
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi.
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 30 poäng / 45 hpOppgave
Abstract [en]

The advancement in computer vision field with the help of deep learning methods is significant. The increase in computational resources, have lead researchers developing solutions that could help them in achieving high accuracy in image segmentation tasks. We performed segmentation of different types of objects in the chromatography instruments used in GE Healthcare, Uppsala. In this thesis project, we investigated methods in Computer vision and deep learning to segment out the different type of objects in instrument image. For a machine to automatically learn the features directly from instrument image, a deep convolutional neural network was implemented based on a recently developed existing architecture. The dataset was collected and preprocessed before using it with the neural network model. The model was trained with two different architecture Unet and Segnet developed for image segmentation. Both the used architecture is efficient and suitable for semantic segmentation tasks. Among different components to segment out in the instrument, there was a thin pipe. Unet was able to achieve good results while segmenting thin pipes with fewer data as well. Results show that Unet can act as a suitable architecture for segmenting different objects in an instrument even if we have only 100 images. Further advances can be done to improve the performance of the model by generating a better mask of the model and finding a way to collect more data for training the model.

sted, utgiver, år, opplag, sider
2019. , s. 82
Serie
IT ; 19017
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-392105OAI: oai:DiVA.org:uu-392105DiVA, id: diva2:1346922
Utdanningsprogram
Master Programme in Computer Science
Veileder
Examiner
Tilgjengelig fra: 2019-08-29 Laget: 2019-08-29 Sist oppdatert: 2019-08-29bibliografisk kontrollert

Open Access i DiVA

fulltext(30106 kB)863 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 30106 kBChecksum SHA-512
947d431b789ffee9dccb84dda301e064a88db6021b188d406cf40d0c1146069dddd71d36a4349803ac316903445768ff72e93d6557b2302a9c3c320e85336b7a
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 865 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 453 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf