Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Indoor navigation using vision-based localization and augmented reality
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi.
2019 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

Implementing an indoor navigation system requires alternative techniques to the GPS. One solution is vision-based localization which takes advantage of visual landmarks and a camera to read the environment and determine positioning. Three computer vision algorithms used for pose estimation are tested and evaluated in this project in order to determine their viability in an indoor navigation system. Two algorithms, SIFT (Scale-Invariant Feature Transform) and SURF (Speeded-Up Robust Features), take advantage of the natural features in an image, whereas the third algorithm, ArUco, uses a manufactured marker. The evaluation displayed certain advantages for all solutions, however with the goal of using it for a navigation system ArUco was the superior solution as it performed well for key criteria, mainly computational performance and range of detection. An indoor navigation system for Android devices was developed using ArUco marker tracking for positioning and augmented reality for pro- jecting the route. The application was able to successfully fulfill its goal of providing route guidance to a specific target location.

sted, utgiver, år, opplag, sider
2019. , s. 49
Serie
UPTEC IT, ISSN 1401-5749 ; 19001
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-391930OAI: oai:DiVA.org:uu-391930DiVA, id: diva2:1345994
Utdanningsprogram
Master of Science Programme in Information Technology Engineering
Veileder
Examiner
Tilgjengelig fra: 2019-08-26 Laget: 2019-08-26 Sist oppdatert: 2019-08-26bibliografisk kontrollert

Open Access i DiVA

fulltext(3344 kB)5214 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3344 kBChecksum SHA-512
ef0bc1af8023b305a63a38470ff5a4220416b2f3a70ba5bb65f41d6b51efa545c58924bde8b56cac0b77c59efd9e9ccd083c07ebcf5257ea6fb5155ff37800d6
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 5217 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1310 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf