Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
GreenML: A methodology for fair evaluation of machine learning algorithms with respect to resource consumption
Linköpings universitet, Institutionen för datavetenskap.
Linköpings universitet, Institutionen för datavetenskap.
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgaveAlternativ tittel
Grön maskininlärning : En metod för rättvis utvärdering av maskininlärningsalgorithmer baserat på resursanvändning (svensk)
Abstract [en]

Impressive results can be achieved when stacking deep neural networks hierarchies together. Several machine learning papers claim state-of-the-art results when evaluating their models with different accuracy metrics. However, these models come at a cost, which is rarely taken into consideration. This thesis aims to shed light on the resource consumption of machine learning algorithms, and therefore, five efficiency metrics are proposed. These should be used for evaluating machine learning models, taking accuracy, model size, and time and energy consumption for both training and inference into account. These metrics are intended to allow for a fairer evaluation of machine learning models, not only looking at accuracy. This thesis presents an example of how these metrics can be used by applying them to both text and image classification tasks using the algorithms SVM, MLP, and CNN.

sted, utgiver, år, opplag, sider
2019. , s. 56
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-159837ISRN: LIU-IDA/LITH-EX-A--19/071--SEOAI: oai:DiVA.org:liu-159837DiVA, id: diva2:1345249
Fag / kurs
Computer Engineering
Veileder
Examiner
Tilgjengelig fra: 2019-08-26 Laget: 2019-08-23 Sist oppdatert: 2019-08-26bibliografisk kontrollert

Open Access i DiVA

fulltext(1090 kB)967 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1090 kBChecksum SHA-512
3870ef96f43a8f4df8cc7205f7b5e344187d412d41d1b40ba12a7d58bc81bb5080b9e8efbfaeff9d3e126647415fc022efbb302c00ccefb854a16693a1eda02a
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 972 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1840 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf