Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting the unpredictable - Can Artificial Neural Network replace ARIMA for prediction of the Swedish Stock Market (OMXS30)?
Mittuniversitetet, Fakulteten för humanvetenskap, Institutionen för ekonomi, geografi, juridik och turism.
2019 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

During several decades the stock market has been an area of interest forresearchers due to its complexity, noise, uncertainty and nonlinearity of thedata. Most of the studies regarding this area use a classical stochastics method,an example of this is ARIMA which is a standard approach for time seriesprediction. There is however another method for prediction of the stock marketthat is gaining traction in the recent years; Artificial Neural Network (ANN).This method has mostly been used in research on the American and Asian stockmarkets so far. Therefore, the purpose of this essay was to explore if ArtificialNeural Network could be used instead of ARIMA to predict the Swedish stockmarket (OMXS30). The study used data from the Swedish Stock Marketbetween 1991-07-09 to 2018-12-28 for the training of the ARIMA model anda forecast data that ranged between 2019-01-02 to 2019-04-26. The forecastdata of the ANN was composed of 80% of the data between 1991-07-09 to2019-04-26 and the evaluation data was composed of the remaining 20%. TheANN architecture had one input layer with chunks of 20 consecutive days asinput, followed by three Long Short-Term Memory (LSTM) hidden layers with128 neurons in each layer, followed by another hidden layer with RectifiedLinear Unit (ReLU) containing 32 neurons, followed by the output layercontaining 2 neurons with softmax activation. The results showed that theANN, with an accuracy of 0,9892, could be a successful method to forecast theSwedish stock market instead of ARIMA.

sted, utgiver, år, opplag, sider
2019. , s. 45
Emneord [en]
Artificial Neural Network, ARIMA, LSTM, stock market
HSV kategori
Identifikatorer
URN: urn:nbn:se:miun:diva-36908OAI: oai:DiVA.org:miun-36908DiVA, id: diva2:1344390
Fag / kurs
Business Administration FE1
Veileder
Examiner
Tilgjengelig fra: 2019-08-20 Laget: 2019-08-20 Sist oppdatert: 2019-08-20bibliografisk kontrollert

Open Access i DiVA

fulltext(964 kB)281 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 964 kBChecksum SHA-512
b65c6ec84b1bcbdf8065aa55e0addb3d84f3076491f5828ce17f8cfffdfcb38fd536eb9effcb7ce8f21e3e135a6872f79dd45b41ccb390a7de2e11211ef84c43
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 281 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 570 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf