Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Image enhancement effect on the performance of convolutional neural networks
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
2019 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Context. Image enhancement algorithms can be used to enhance the visual effects of images in the field of human vision. So can image enhancement algorithms be used in the field of computer vision? The convolutional neural network, as the most powerful image classifier at present, has excellent performance in the field of image recognition. This paper explores whether image enhancement algorithms can be used to improve the performance of convolutional neural networks.

Objectives. The purpose of this paper is to explore the effect of image enhancement algorithms on the performance of CNN models in deep learning and transfer learning, respectively. The article selected five different image enhancement algorithms, they are the contrast limited adaptive histogram equalization (CLAHE), the successive means of the quantization transform (SMQT), the adaptive gamma correction, the wavelet transform, and the Laplace operator.

Methods. In this paper, experiments are used as research methods. Three groups of experiments are designed; they respectively explore whether the enhancement of grayscale images can improve the performance of CNN in deep learning, whether the enhancement of color images can improve the performance of CNN in deep learning and whether the enhancement of RGB images can improve the performance of CNN in transfer learning?Results. In the experiment, in deep learning, when training a complete CNN model, using the Laplace operator to enhance the gray image can improve the recall rate of CNN. However, the remaining image enhancement algorithms cannot improve the performance of CNN in both grayscale image datasets and color image datasets. In addition, in transfer learning, when fine-tuning the pre-trained CNN model, using contrast limited adaptive histogram equalization (CLAHE), successive means quantization transform (SMQT), Wavelet transform, and Laplace operator will reduce the performance of CNN.

Conclusions. Experiments show that in deep learning, using image enhancement algorithms may improve CNN performance when training complete CNN models, but not all image enhancement algorithms can improve CNN performance; in transfer learning, when fine-tuning the pre- trained CNN model, image enhancement algorithms may reduce the performance of CNN.

sted, utgiver, år, opplag, sider
2019. , s. 40
Emneord [en]
Image Enhancement, Convolutional Neural Networks, Deep Learning, Transfer Learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:bth-18523OAI: oai:DiVA.org:bth-18523DiVA, id: diva2:1341096
Fag / kurs
DV2572 Master´s Thesis in Computer Science
Utdanningsprogram
DVACS Master of Science Programme in Computer Science
Veileder
Examiner
Tilgjengelig fra: 2019-08-12 Laget: 2019-08-07 Sist oppdatert: 2019-08-12bibliografisk kontrollert

Open Access i DiVA

Image enhancement effect on the performance of convolutional neural networks(1648 kB)10941 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 1648 kBChecksum SHA-512
a8839c256e2733621df081b9f2c6324e22a7f73dae78fd892b378c2b866f91ba3697a304a78039812e89286913cb5b9d747fac41047e6660fd2385f94a5fdaf4
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 10941 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 3681 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf