Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data-Driven Predictions of Heating Energy Savings in Residential Buildings
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad mekanik, Byggteknik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad mekanik, Byggteknik.
2019 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

Along with the increasing use of intermittent electricity sources, such as wind and sun, comes a growing demand for user flexibility. This has paved the way for a new market of services that provide electricity customers with energy saving solutions. These include a variety of techniques ranging from sophisticated control of the customers’ home equipment to information on how to adjust their consumption behavior in order to save energy. This master thesis work contributes further to this field by investigating an additional incentive; predictions of future energy savings related to indoor temperature. Five different machine learning models have been tuned and used to predict monthly heating energy consumption for a given set of homes. The model tuning process and performance evaluation were performed using 10-fold cross validation. The best performing model was then used to predict how much heating energy each individual household could save by decreasing their indoor temperature by 1°C during the heating season. The highest prediction accuracy (of about 78%) is achieved with support vector regression (SVR), closely followed by neural networks (NN). The simpler regression models that have been implemented are, however, not far behind. According to the SVR model, the average household is expected to lower their heating energy consumption by approximately 3% if the indoor temperature is decreased by 1°C. 

sted, utgiver, år, opplag, sider
2019. , s. 62
Serie
UPTEC STS, ISSN 1650-8319 ; 19027
Emneord [en]
Building Energy, Machine Learning, Energy Savings, Heating Energy, Indoor Temperature, Neural Networks, Support Vector Regression, Random Forest, Ridge Regression, K-Nearest Neighbors
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-387395OAI: oai:DiVA.org:uu-387395DiVA, id: diva2:1329457
Eksternt samarbeid
Tibber AS
Utdanningsprogram
Systems in Technology and Society Programme
Veileder
Examiner
Tilgjengelig fra: 2019-06-24 Laget: 2019-06-24 Sist oppdatert: 2019-06-24bibliografisk kontrollert

Open Access i DiVA

fulltext(2194 kB)33 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2194 kBChecksum SHA-512
cb0ad285c51717a6629b70d5cf0c9cba2bd211bcfc2aac5037363632a8f942fad34611f1e16fbd40a2586c9bb45d526869d98214283bf72740c311a9a7ad9dc6
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 33 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 82 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf