Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Growth of semi-coherent Ni and NiO dual-phase nanoparticles using hollow cathode sputtering
Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.
Tokyo Metropolitan Univ, Japan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Plasma och beläggningsfysik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-6602-7981
Tokyo Metropolitan Univ, Japan.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 21, nr 2, artikkel-id 37Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Anisotropic heterogenous Ni/NiO nanoparticles with controlled compositions are grown using a high-power pulsed hollow cathode process. These novel particles can be tuned to consist of single-phase Ni via two-phase Ni/NiO to fully oxidized NiO, with a size range of 5-25 nm for individual crystals. A novelty of this approach is the ability to assemble multiple particles of Ni and NiO into a single complex structure, increasing the Ni-NiO interface density. This type of particle growth is not seen before and is explained to be due to the fact that the process operates in a single-step approach, where both Ni and O can arrive at the formed nanoparticle nuclei and aid in the continuous particle growth. The finished particle will then be a consequence of the initially formed crystal, as well as the arrival rate ratio of the two species. These particles hold great potential for applications in fields, such as electro- and photocatalysis, where the ability to control the level of oxidation and/or interface density is of great importance.

sted, utgiver, år, opplag, sider
SPRINGER , 2019. Vol. 21, nr 2, artikkel-id 37
Emneord [en]
Ni; NiO; Anisotropic; Nanoparticles; Hollow cathode; Nanoparticle assembly
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-154838DOI: 10.1007/s11051-019-4479-4ISI: 000458657800001OAI: oai:DiVA.org:liu-154838DiVA, id: diva2:1294592
Merknad

Funding Agencies|Knut and Alice Wallenberg Foundation [KAW 2014.0276]; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [2009 00971]; Tokyo Metropolitan University; Linkoping University

Tilgjengelig fra: 2019-03-07 Laget: 2019-03-07 Sist oppdatert: 2019-11-11
Inngår i avhandling
1. Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles
Åpne denne publikasjonen i ny fane eller vindu >>Plasma Synthesis and Self-Assembly of Magnetic Nanoparticles
2019 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Nanomaterials are important tools for enabling technological progress as they can provide dramatically different properties as compared to the bulk counterparts. The field of nanoparticles is one of the most investigated within nanomaterials, thanks to the existing, relatively simple, means of manufacturing. In this thesis, high-power pulsed hollow cathode sputtering is used to nucleate and grow magnetic nanoparticles in a plasma. This sputtering technique provides a high degree of ionization of the sputtered material, which has previously been shown to aid in the growth of the nanoparticles. The magnetic properties of the particles are utilized and makes it possible for the grown particles to act as building blocks for self-assembly into more sophisticated nano structures, particularly when an external magnetic field is applied. These structures created are termed “nanowires” or “nanotrusses”, depending on the level of branching and inter-linking that occurs.

Several different elements have been investigated in this thesis. In a novel approach, it is shown how nanoparticles with more advanced structures, and containing material from two hollow cathodes, can be fabricated using high-power pulses. The dual-element particles are achieved by using two distinct and individual elemental cathodes, and a pulse process that allows tuning of individual pulses separately to them. Nanoparticles grown and investigated are Fe, Ni, Pt, Fe-Ni and Ni-Pt. Alternatively, the addition of oxygen to the process allows the formation of oxide or hybrid metal oxide – metal particles. For all nanoparticles containing several elements, it is demonstrated that the stoichiometry can be easily varied, either by the amount of reactive gas let into the process or by tuning the amount of sputtered material through adjusting the electric power supplied to the different cathodes.

One aim of the presented work is to find a suitable material for the use as a catalyst in the production of H2 gas through the process of water splitting. H2 is a good candidate to replace fossil fuels as an energy carrier. However, rare elements (such as Ir or Pt) needs to be used as the catalyst, otherwise a high overpotential is required for the splitting to occur, leading to a low efficiency. This work demonstrates a possible route to avoid this, by using nanomaterials to increase the surface-to-volume ratio, as well as optimizing the elemental ratio between different materials to lower the amount of noble elements required. 

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2019. s. 58
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2007
Emneord
Plasma, Synthesis, Self-Assembly, Magnetic, Nanoparticles
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-161300 (URN)10.3384/diss.diva-161300 (DOI)9789176850091 (ISBN)
Disputas
2019-12-10, Planck, Fysikhuset, Campus Valla, Linköping, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-11-08 Laget: 2019-10-28 Sist oppdatert: 2019-11-08bibliografisk kontrollert

Open Access i DiVA

fulltext(1276 kB)125 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1276 kBChecksum SHA-512
55d89e4b9a889b1457718e377f2d2123f9d23d26d984f03e6148918d4d956f104327efa9b9a79e14f1a912380b043eae5d811a552627e68ebbd9f822819ca1de
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Ekeroth, SebastianBoyd, RobertHelmersson, Ulf
Av organisasjonen
I samme tidsskrift
Journal of nanoparticle research

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 125 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 145 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf