Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Control of Residential Battery Charge Scheduling using Machine Learning
KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
2018 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

This thesis proposes the use of a Reinforcement Learning (RL) agent to control the charge scheduling of a residential battery system. The system consists of a house located in Sweden equipped with a photo-voltaic array and grid-connection. Real residential load data is used while the PV output is simulated. The RL agent is trained using the Proximal Policy Optimization (PPO) algorithm to charge and discharge the battery within a continuous action space. The agent is trained and tested on three price contracts: fixed, monthly, and hourly. The perfor-mance of the agent is compared to a system without the battery, and to a Mixed Integer Linear Programming (MILP) optimizer controlling the battery. Results showed that while it was possible to train the agent to control the charge scheduling of the battery, the economic perfor-mance was only marginally better than a battery-less system and much poorer than MILP control. Of the price contracts, the agent had rela-tively better performance on the fixed price contract. The sensitivity of the RL algorithm to parameters and the reward function suggests that further investigation is needed in order to draw firm conclusions on the suitability of this method to the task in question.

sted, utgiver, år, opplag, sider
2018. , s. 61
Serie
TRITA-ITM-EX 2019 ; 3
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-244988OAI: oai:DiVA.org:kth-244988DiVA, id: diva2:1293384
Veileder
Examiner
Tilgjengelig fra: 2019-03-04 Laget: 2019-03-04 Sist oppdatert: 2019-03-04bibliografisk kontrollert

Open Access i DiVA

fulltext(1773 kB)163 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1773 kBChecksum SHA-512
b8f3029d83c27ce69a249793744a552ab3c3aa98903b79d3600572d29a2bd6c5d1212327529f6d1e8b5478ebe1b31cb88b10f1d9686972572377b28d3ef2d61a
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 163 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 210 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf