Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Correlation-compressed direct-coupling analysis
Chinese Acad Sci, Inst Theoret Phys, Key Lab Theoret Phys, Beijing 100190, Peoples R China.;Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China..
Chinese Acad Sci, Inst Theoret Phys, Key Lab Theoret Phys, Beijing 100190, Peoples R China.;Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China.;Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China..
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB. Aalto Univ, Dept Appl Phys, Aalto 00076, Finland.;Aalto Univ, Dept Comp Sci, Aalto 00076, Finland..
2018 (engelsk)Inngår i: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 98, nr 3, artikkel-id 032407Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Learning Ising or Potts models from data has become an important topic in statistical physics and computational biology, with applications to predictions of structural contacts in proteins and other areas of biological data analysis. The corresponding inference problems are challenging since the normalization constant (partition function) of the Ising or Potts distribution cannot be computed efficiently on large instances. Different ways to address this issue have resulted in a substantial amount of methodological literature. In this paper we investigate how these methods could be used on much larger data sets than studied previously. We focus on a central aspect, that in practice these inference problems are almost always severely under-sampled, and the operational result is almost always a small set of leading predictions. We therefore explore an approach where the data are prefiltered based on empirical correlations, which can be computed directly even for very large problems. Inference is only used on the much smaller instance in a subsequent step of the analysis. We show that in several relevant model classes such a combined approach gives results of almost the same quality as inference on the whole data set. It can therefore provide a potentially very large computational speedup at the price of only marginal decrease in prediction quality. We also show that the results on whole-genome epistatic couplings that were obtained in a recent computation-intensive study can be retrieved by our approach. The method of this paper hence opens up the possibility to learn parameters describing pairwise dependences among whole genomes in a computationally feasible and expedient manner.

sted, utgiver, år, opplag, sider
American Physical Society, 2018. Vol. 98, nr 3, artikkel-id 032407
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-235441DOI: 10.1103/PhysRevE.98.032407ISI: 000444574600006Scopus ID: 2-s2.0-85053241828OAI: oai:DiVA.org:kth-235441DiVA, id: diva2:1251500
Merknad

QC 20180927

Tilgjengelig fra: 2018-09-27 Laget: 2018-09-27 Sist oppdatert: 2018-10-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Aurell, Erik
Av organisasjonen
I samme tidsskrift
Physical review. E

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 65 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf