Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree-Fock
Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA.
Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Teoretisk kemi.ORCID-id: 0000-0001-7567-8295
Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA;Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada.
2018 (engelsk)Inngår i: ACS CENTRAL SCIENCE, ISSN 2374-7943, Vol. 4, nr 5, s. 559-566Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Automatic differentiation (AD) is a powerful tool that allows calculating derivatives of implemented algorithms with respect to all of their parameters up to machine precision, without the need to explicitly add any additional functions. Thus, AD has great potential in quantum chemistry, where gradients are omnipresent but also difficult to obtain, and researchers typically spend a considerable amount of time finding suitable analytical forms when implementing derivatives. Here, we demonstrate that AD can be used to compute gradients with respect to any parameter throughout a complete quantum chemistry method. We present DiffiQult, a Hartree-Fock implementation, entirely differentiated with the use of AD tools. DiffiQult is a software package written in plain Python with minimal deviation from standard code which illustrates the capability of AD to save human effort and time in implementations of exact gradients in quantum chemistry. We leverage the obtained gradients to optimize the parameters of one-particle basis sets in the context of the floating Gaussian framework.

sted, utgiver, år, opplag, sider
AMER CHEMICAL SOC , 2018. Vol. 4, nr 5, s. 559-566
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-358092DOI: 10.1021/acscentsci.7b00586ISI: 000434851700009PubMedID: 29806002OAI: oai:DiVA.org:uu-358092DiVA, id: diva2:1241743
Forskningsfinansiär
Swedish Research Council, 2016-03398Tilgjengelig fra: 2018-08-24 Laget: 2018-08-24 Sist oppdatert: 2018-08-24bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Lindh, Roland
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 8 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf