Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cluster-based test scheduling strategies using semantic relationships between test specifications
RISE - Research Institutes of Sweden, ICT, SICS.ORCID-id: 0000-0002-8724-9049
Mälardalen University, Sweden.
University of Innsbruck, Austria.
Mälardalen University, Sweden.
Vise andre og tillknytning
2018 (engelsk)Konferansepaper, Publicerat paper (Annet vitenskapelig)
Abstract [en]

One of the challenging issues in improving the test efficiency isthat of achieving a balance between testing goals and testing resources.Test execution scheduling is one way of saving time andbudget, where a set of test cases are grouped and tested at thesame time. To have an optimal test execution schedule, all relatedinformation of a test case (e.g. execution time, functionality to betested, dependency and similarity with other test cases) need tobe analyzed. Test scheduling problem becomes more complicatedat high-level testing, such as integration testing and especially inmanual testing procedure. Test specifications are generally writtenin natural text by humans and usually contain ambiguity anduncertainty. Therefore, analyzing a test specification demands astrong learning algorithm. In this position paper, we propose anatural language processing-based approach that, given test specificationsat the integration level, allows automatic detection oftest cases semantic dependencies. The proposed approach utilizesthe Doc2Vec algorithm and converts each test case into a vectorin n-dimensional space. These vectors are then grouped using theHDBSCAN clustering algorithm into semantic clusters. Finally, aset of cluster-based test scheduling strategies are proposed for execution.The proposed approach has been applied in a sub-systemfrom the railway domain by analyzing an ongoing testing projectat Bombardier Transportation AB, Sweden.

sted, utgiver, år, opplag, sider
2018. s. 1-4
Emneord [en]
clustering, dependency, Doc2Vec, HDBSCAN, NLP, software testing, test optimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:ri:diva-34878DOI: 10.1145/3195538.3195540Scopus ID: 2-s2.0-85051238162ISBN: 978-1-4503-5749-4 (tryckt)OAI: oai:DiVA.org:ri-34878DiVA, id: diva2:1240488
Konferanse
Proceedings of the 5th International Workshop on Requirements Engineering and Testing. Gothenburg, Sweden
Tilgjengelig fra: 2018-08-21 Laget: 2018-08-21 Sist oppdatert: 2020-01-29bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Tahvili, SaharSaadatmand, MehrdadBohlin, Markus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 17 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf