Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Co-Evolving Online High-Frequency Trading Strategies Using Grammatical Evolution
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0412-6199
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
2014 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Numerous sophisticated algorithms exist for discovering reoccurring patterns in financial time series. However, the most accurate techniques available produce opaque models, from which it is impossible to discern the rationale behind trading decisions. It is therefore desirable to sacrifice some degree of accuracy for transparency. One fairly recent evolutionary computational technology that creates transparent models, using a user-specified grammar, is grammatical evolution (GE). In this paper, we explore the possibility of evolving transparent entry- and exit trading strategies for the E-mini S&P 500 index futures market in a high-frequency trading environment using grammatical evolution. We compare the performance of models incorporating risk into their calculations with models that do not. Our empirical results suggest that profitable, risk-averse, transparent trading strategies for the E-mini S&P 500 can be obtained using grammatical evolution together with technical indicators.

sted, utgiver, år, opplag, sider
IEEE, 2014.
Emneord [en]
Grammatical evolution, High-frequency trading, Machine learning, Data mining
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-38082DOI: 10.1109/CIFEr.2014.6924111Lokal ID: 0;0;miljJAILOAI: oai:DiVA.org:hj-38082DiVA, id: diva2:1163350
Konferanse
IEEE Conference on Computational Intelligence for Financial Engineering & Economics, 27-28 March, 2014, London, UK
Merknad

Best paper award.

Tilgjengelig fra: 2017-12-06 Laget: 2017-12-06 Sist oppdatert: 2019-08-23bibliografisk kontrollert

Open Access i DiVA

fulltext(1023 kB)93 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1023 kBChecksum SHA-512
73a0a786c54fbcf85998ac90f78d1b9082245c1bde7323b26e3e927f93bfa7c51155f40bcca6aa729ba307f8c94d61f262af867d5526258abcb5fe7991531336
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Johansson, Ulf

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 93 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 111 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf