Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evolved Decision Trees as Conformal Predictors
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0412-6199
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
Högskolan i Borås, Institutionen Handels- och IT-högskolan.ORCID-id: 0000-0003-0274-9026
Högskolan i Borås, Institutionen Handels- och IT-högskolan.
2013 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

In conformal prediction, predictive models output sets of predictions with a bound on the error rate. In classification, this translates to that the probability of excluding the correct class is lower than a predefined significance level, in the long run. Since the error rate is guaranteed, the most important criterion for conformal predictors is efficiency. Efficient conformal predictors minimize the number of elements in the output prediction sets, thus producing more informative predictions. This paper presents one of the first comprehensive studies where evolutionary algorithms are used to build conformal predictors. More specifically, decision trees evolved using genetic programming are evaluated as conformal predictors. In the experiments, the evolved trees are compared to decision trees induced using standard machine learning techniques on 33 publicly available benchmark data sets, with regard to predictive performance and efficiency. The results show that the evolved trees are generally more accurate, and the corresponding conformal predictors more efficient, than their induced counterparts. One important result is that the probability estimates of decision trees when used as conformal predictors should be smoothed, here using the Laplace correction. Finally, using the more discriminating Brier score instead of accuracy as the optimization criterion produced the most efficient conformal predictions.

sted, utgiver, år, opplag, sider
IEEE , 2013.
Emneord [en]
Conformal prediction, Genetic programming, Data mining, Machine Learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:hj:diva-38092DOI: 10.1109/CEC.2013.6557778ISI: 000326235301102Lokal ID: 0;0;miljJAILISBN: 978-1-4799-0453-2 (tryckt)OAI: oai:DiVA.org:hj-38092DiVA, id: diva2:1163322
Konferanse
IEEE Congress on Evolutionary Computation, 20-23 June 2013
Merknad

Sponsorship:

Swedish Foundation

for Strategic Research through the project High-Performance

Data Mining for Drug Effect Detection (IIS11-0053) and the

Knowledge Foundation through the project Big Data Analytics

by Online Ensemble Learning (20120192).

Tilgjengelig fra: 2017-12-06 Laget: 2017-12-06 Sist oppdatert: 2019-08-23bibliografisk kontrollert

Open Access i DiVA

fulltext(1131 kB)71 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1131 kBChecksum SHA-512
6f50a86fa663e15110ae48699c1680bfd761568249a1927e687299294a9b94e9da80c0f785c03f9ea9b3d828a88b64dfaee09857626d3928498bb99d05eb5d6c
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Johansson, UlfLöfström, Tuve

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 71 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 70 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf