Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
E-HPC: A Library for Elastic Resource Management in HPC Environments
Lawrence Berkeley National Laboratory. (School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia)
(Lawrence Berkeley National Laboratory)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Lawrence Berkeley National Laboratory. (Distributed Systems)
(Lawrence Berkeley National Laboratory)
Vise andre og tillknytning
2017 (engelsk)Inngår i: 12th Workshop on Workflows in Support of Large-Scale Science (WORKS), New York, NY, USA: Association for Computing Machinery (ACM), 2017, artikkel-id 1Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Next-generation data-intensive scientific workflows need to support streaming and real-time applications with dynamic resource needs on high performance computing (HPC) platforms. The static resource allocation model on current HPC systems that was designed for monolithic MPI applications is insufficient to support the elastic resource needs of current and future workflows. In this paper, we discuss the design, implementation and evaluation of Elastic-HPC (E-HPC), an elastic framework for managing resources for scientific workflows on current HPC systems. E-HPC considers a resource slot for a workflow as an elastic window that might map to different physical resources over the duration of a workflow. Our framework uses checkpoint-restart as the underlying mechanism to migrate workflow execution across the dynamic window of resources. E-HPC provides the foundation necessary to enable dynamic resource allocation of HPC resources that are needed for streaming and real-time workflows. E-HPC has negligible overhead beyond the cost of checkpointing. Additionally, E-HPC results in decreased turnaround time of workflows compared to traditional model of resource allocation for workflows, where resources are allocated per stage of the workflow. Our evaluation shows that E-HPC improves core hour utilization for common workflow resource use patterns and provides an effective framework for elastic expansion of resources for applications with dynamic resource needs.

sted, utgiver, år, opplag, sider
New York, NY, USA: Association for Computing Machinery (ACM), 2017. artikkel-id 1
Emneord [en]
high performance computing, scientific workflows, resource management
HSV kategori
Forskningsprogram
datalogi
Identifikatorer
URN: urn:nbn:se:umu:diva-142624DOI: 10.1145/3150994.3150996Scopus ID: 2-s2.0-85054761132ISBN: 978-1-4503-5129-4 (tryckt)OAI: oai:DiVA.org:umu-142624DiVA, id: diva2:1163222
Konferanse
The International Conference for High Performance Computing, Networking, Storage and Analysis
Tilgjengelig fra: 2017-12-06 Laget: 2017-12-06 Sist oppdatert: 2023-03-24bibliografisk kontrollert
Inngår i avhandling
1. Application-aware resource management for datacenters
Åpne denne publikasjonen i ny fane eller vindu >>Application-aware resource management for datacenters
2018 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Applikationsmedveten resurshantering för datacenter
Abstract [en]

High Performance Computing (HPC) and Cloud Computing datacenters are extensively used to steer and solve complex problems in science, engineering, and business, such as calculating correlations and making predictions. Already in a single datacenter server, there are thousands of hardware and software metrics – Key Performance Indicators (KPIs) – that individually and aggregated can give insight in the performance, robustness, and efficiency of the datacenter and the provisioned applications. At the datacenter level, the number of KPIs is even higher. The fast growing interest on datacenter management from both public and industry together with the rapid expansion in scale and complexity of datacenter resources and the services being provided on them have made monitoring, profiling, controlling, and provisioning compute resources dynamically at runtime into a challenging and complex task. Commonly, correlations of application KPIs, like response time and throughput, with resource capacities show that runtime systems (e.g., containers or virtual machines) that are used to provision these applications do not utilize available resources efficiently. This reduces datacenter efficiency, which in term results in higher operational costs and longer waiting times for results.

The goal of this thesis is to develop tools and autonomic techniques for improving datacenter operations, management and utilization, while improving and/or minimizing impacts on applications performance. To this end, we make use of application resource descriptors to create a library that dynamically adjusts the amount of resources used, enabling elasticity for scientific workflows in HPC datacenters. For mission critical applications, high availability is of great concern since these services must be kept running even in the event of system failures. By modeling and correlating specific resource counters, like CPU, memory and network utilization, with the number of runtime synchronizations, we present adaptive mechanisms to dynamically select which fault tolerant mechanism to use. Likewise, for scientific applications we propose a hybrid extensible architecture for dual-level scheduling of data intensive jobs in HPC infrastructures, allowing operational simplification, on-boarding of new types of applications and achieving greater job throughput with higher overall datacenter efficiency.

sted, utgiver, år, opplag, sider
Umeå: Department of computing science, Umeå university, 2018. s. 28
Serie
Report / UMINF, ISSN 0348-0542 ; 18.14
Emneord
Resource Management, High Performance Computing, Cloud Computing
HSV kategori
Forskningsprogram
datalogi
Identifikatorer
urn:nbn:se:umu:diva-155620 (URN)978-91-7601-971-9 (ISBN)
Presentation
2018-12-12, MA121, MIT-Huset, Umeå, 20:31 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2019-01-25 Laget: 2019-01-24 Sist oppdatert: 2020-09-14bibliografisk kontrollert
2. Autonomous resource management for high performance datacenters
Åpne denne publikasjonen i ny fane eller vindu >>Autonomous resource management for high performance datacenters
2020 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Alternativ tittel[sv]
Autonom resurshantering för högpresterande datacenter
Abstract [en]

Over the last decade, new applications such as data intensive workflows have hit an inflection point in wide spread use and influenced the compute paradigm of most scientific and industrial endeavours. Data intensive workflows are highly dynamic and adaptable to resource changes, system faults, and by also allowing approximate solutions into their models. On the one hand, these dynamic characteristics require processing power and capabilities originated in cloud computing environments, and are not well supported by large High Performance Computing (HPC) infrastructures. On the other hand, cloud computing datacenters favor low latency over throughput, deeply contrasting with HPC, which enforces a centralized environment and prioritizes total computation accomplished over-time, ignoring latency entirely. Although data handling needs are predicted to increase by as much as a thousand times over the next decade, future datacenters processing power will not increase as much.

To tackle these long-term developments, this thesis proposes autonomic methods combined with novel scheduling strategies to optimize datacenter utilization while guaranteeing user defined constraints and seamlessly supporting a wide range of applications under various real operational scenarios. Leveraging upon data intensive characteristics, a library is developed to dynamically adjust the amount of resources used throughout the lifespan of a workflow, enabling elasticity for such applications in HPC datacenters. For mission critical environments where services must run even in the event of system failures, we define an adaptive controller to dynamically select the best method to perform runtime state synchronizations. We develop different hybrid extensible architectures and reinforcement learning scheduling algorithms that smoothly enable dynamic applications into HPC environments. An overall theme in this thesis is extensive experimentation in real datacenters environments. Our results show improvements in datacenter utilization and performance, achieving higher overall efficiency. Our methods also simplify operations and allow the onboarding of novel types of applications previously not supported.

Abstract [sv]

Dataintensiva workflows är en ny klass av applikationer som blivit alltmer vanliga under senaste årtiondet och har stor påverkan på hur beräkningar utförs inom flertalet forskningsområden och i industrin. Dessa dataintensiva workflows kan dynamiskt anpassa sig till ändringar i resursallokering, systemfel och kan ibland även approximera lösningar vid resursbrist. De kräver hög beräkningskraft och därtill funktionalitet som endast återfinns i datormoln och de passar därmed dåligt i dagens högpresterande datorsystem (HPC-system). Datacenter i molnet prioriterar att snabbt starta nyinkomna applikationer, vilket drastiskt skiljer sig från HPC-miljöer där hög genomströmning över tid är det främsta målet. Trots att behovet av datahantering uppskattas öka mer än tusenfallt under kommande årtioende kommer framtidens datacenter inte att ha motsvarande utveckling av beräkningskapacitet.

Denna avhandling möter dessa utmaningar genom en kombination av autonoma system och nya strategier för schedulering för att optimera utnyttjandegraden i datacenter. Detta sker utan att göra avkall på användares prestandakrav och därtill med målet att stödja ett brett spektrum av applikationer och scenarios. Ett bibliotek utvecklas för att dynamiskt anpassa resursallokering för workflows under körning, vilket innebär att även HPC-system kan stödja elastiska applikationer som tidigare bara kunde exekveras i datormoln. För miljöer med höga krav på tillgänglighet defineras en regulator för att dynamiskt anpassa hur applikationer synkroniserar tillstånd, för mer resurseffektiv aktiv replikering. Avhandlingen utvecklar även flera resurshanteringssystem baserat på schedulering med förstärkningsinlärning i syftet att förbättra stödet för dynamiska applikationer i HPC-system. Ett övergripande tema i avhandlingen är omfattande utvärderingar av de framtagna metoderna och systemen genom storskaliga experiment i verkliga datacenter. Resultaten visar förbättringar överlag av resursutnyttjande och prestanda i datacenter. De utvecklade systemen förenklar även drift och möjliggör nya typer av applikationer som tidigare ej kunnat exekveras i HPC-miljöer.

sted, utgiver, år, opplag, sider
Umeå: Umeå University, 2020. s. 44
Serie
Report / UMINF, ISSN 0348-0542 ; 20.03
Emneord
Datacenters, high performance computing, scheduling, hybrid
HSV kategori
Forskningsprogram
datalogi
Identifikatorer
urn:nbn:se:umu:diva-169633 (URN)978-91-7855-286-3 (ISBN)978-91-7855-287-0 (ISBN)
Disputas
2020-05-08, MIT Place Seminarierummet, MIT-byggnaden (Plan 2), Umeå, 10:00 (engelsk)
Opponent
Veileder
Merknad

New place for the public defence (wrong place in the posting sheet). 

Tilgjengelig fra: 2020-04-17 Laget: 2020-04-13 Sist oppdatert: 2020-05-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Souza, Abel
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 540 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf