Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors
KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar. (Integrated Circuits and Systems)ORCID-id: 0000-0002-2684-0724
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Energy harvesting is identified as an alternative solution for powering implantable biosensors. It can potentially enable the development of self-powered implants if the harvested energy is properly handled. This development implies that batteries, which impose many limitations, are replaced by miniature harvesting devices. Customized interface circuits are necessary to correct for differences in the voltage and power levels provided by harvesting devices from one side, and required by biosensor circuits from another. This thesis investigates the available harvesting sources within the human body, proposes various methods and techniques for designing power-efficient interfaces, and presents two CMOS implementations of such interfaces.

Based on the investigation of suitable sources, this thesis focuses on glucose biofuel cells and thermoelectric harvesters, which provide appropriate performance in terms of power density and lifetime. In order to maximize the efficiency of the power transfer, this thesis undertakes the following steps. First, it performs a detailed analysis of all potential losses within the converter. Second, in relation to the performed analysis, it proposes a design methodology that aims to minimize the sum of losses and the power consumption of the control circuit. Finally, it presents multiple design techniques to further improve the overall efficiency.

The combination of the proposed methods and techniques are validated by two highly efficient energy harvesting interfaces. The first implementation, a thermoelectric energy harvesting interface, is based on a single-inductor dual-output boost converter. The measurement results show that it achieves a peak efficiency of 86.6% at 30 μW. The second implementation combines the energy from two sources, glucose biofuel cell and thermoelectric harvester, to accomplish reliable multi-source harvesting. The measurements show that it achieves a peak efficiency of 89.5% when the combined input power is 66 μW. 

Abstract [sv]

Energiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt.

Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten.

Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW. 

sted, utgiver, år, opplag, sider
KTH Royal Institute of Technology, 2017. , s. 84
Emneord [en]
Energy harvesting interface, thermoelectric generator, glucose biofuel cell, power management, dc-dc converter, boost converter, zero-current switching, zero-voltage switching, implantable biosensor
Emneord [sv]
Energiskördsgränssnitt, termoelektrisk generator, glukosbiobränslecell, energihantering, DC-DC-omvandlare, boost-omvandlare, inplanterbar biosensor
HSV kategori
Forskningsprogram
Informations- och kommunikationsteknik
Identifikatorer
URN: urn:nbn:se:kth:diva-206588ISBN: 978-91-7729-370-5 (tryckt)OAI: oai:DiVA.org:kth-206588DiVA, id: diva2:1093421
Disputas
2017-06-09, Ka-Sal B (Sal Peter Weissglas), Kistagången 16, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Prosjekter
Mi-SoC
Forskningsfinansiär
Swedish Research Council
Merknad

QC 20170508

Tilgjengelig fra: 2017-05-08 Laget: 2017-05-05 Sist oppdatert: 2017-05-09bibliografisk kontrollert
Delarbeid
1. An Efficient Boost Converter Control for Thermoelectric Energy Harvesting
Åpne denne publikasjonen i ny fane eller vindu >>An Efficient Boost Converter Control for Thermoelectric Energy Harvesting
2013 (engelsk)Inngår i: Electronics, Circuits, and Systems (ICECS), 2013 IEEE 20th International Conference on, IEEE conference proceedings, 2013, s. 385-388Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper presents an ultra-low power controlcircuit for a DC-DC boost converter targeting implantablethermoelectric energy harvesting applications. Efficiency of theinput converter is enhanced by utilizing zero-current switchingtechnique. Adaptive delay between ON states of switches assureszero-voltage switching of synchronous rectifier and reducesswitching losses. The control circuit employing both techniquesconsumes an average power of 620nW. This allows the converterto operate from harvested power below 5μW. For voltageconversion ratios above 20, the proposed circuits and techniquesdemonstrate efficiency improvement compared to the state-of-the-art solutions.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2013
Emneord
bioelectronics, analog, microelectronics, low power, energy harvesting, dc-dc converters, control
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-140609 (URN)10.1109/ICECS.2013.6815435 (DOI)000339725900105 ()2-s2.0-84901466220 (Scopus ID)
Konferanse
2013 IEEE 20th International Conference on Electronics, Circuits, and Systems, ICECS 2013, Abu Dhabi, December 8-11, 2013
Forskningsfinansiär
Swedish Research Council, 74327
Merknad

QC 20140205

Tilgjengelig fra: 2014-01-28 Laget: 2014-01-28 Sist oppdatert: 2017-05-05bibliografisk kontrollert
2. Analysis of Dead Time Losses in Energy Harvesting Boost Converters for Implantable Biosensors
Åpne denne publikasjonen i ny fane eller vindu >>Analysis of Dead Time Losses in Energy Harvesting Boost Converters for Implantable Biosensors
2014 (engelsk)Inngår i: NORCHIP, 2014, IEEE conference proceedings, 2014, s. 1-4Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Efficiency of an ultra-low power energy harvesting dc-dc converter depends on its losses and the power consumption of the control circuit. Unlike other loss mechanisms, losses related to dead times have not been thoroughly studied. Therefore, in most cases these losses are not adequately suppressed. This paper investigates dead time losses and their impact on the overall system efficiency. Simple expressions for fast estimation of dead time losses are derived. Analysis shows that in many applications where high voltage conversions are required, such as implantable biosensors, the efficiency reduction due to these losses can easily exceed 2%. The analysis is validated using an adaptive dead time circuit which minimizes the associated losses and improves the overall system efficiency according to the calculated values.

sted, utgiver, år, opplag, sider
IEEE conference proceedings, 2014
Emneord
Implantable biosensors, energy harvesting, DC-DC converters, dead time losses
HSV kategori
Forskningsprogram
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-163558 (URN)10.1109/NORCHIP.2014.7004714 (DOI)2-s2.0-84921470245 (Scopus ID)
Konferanse
IEEE International Conference NORCHIP, Tampere, Finland, 27-28 October 2014
Forskningsfinansiär
Swedish Research Council
Merknad

QC 20150408

Tilgjengelig fra: 2015-04-08 Laget: 2015-04-08 Sist oppdatert: 2017-05-05bibliografisk kontrollert
3. A Dual-Output Thermoelectric Energy Harvesting Interface with 86.6% Peak Efficiency at 30 μW and Total Control Power of 160 nW
Åpne denne publikasjonen i ny fane eller vindu >>A Dual-Output Thermoelectric Energy Harvesting Interface with 86.6% Peak Efficiency at 30 μW and Total Control Power of 160 nW
2016 (engelsk)Inngår i: IEEE Journal of Solid-State Circuits, ISSN 0018-9200, E-ISSN 1558-173XArtikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A thermoelectric energy harvesting interface based on a single-inductor dual-output (SIDO) boost converter is presented. A system-level design methodology combined with ultra-low power circuit techniques reduce the power consumption and minimize the losses within the converter. Additionally, accurate zero-current switching (ZCS) and zero-voltage switching (ZVS) techniques are employed in the control circuit to ensure high conversion efficiency at μW input power levels. The proposed SIDO boost converter is implemented in a 0.18 μm CMOS process and can operate from input voltages as low as 15 mV. The measurement results show that the converter achieves a peak conversion efficiency of 86.6% at 30 μW input power.

sted, utgiver, år, opplag, sider
IEEE Solid-State Circuits Society, 2016
Emneord
Boost converter, energy harvesting, single-inductor dual-output, zero-current switching, zero-voltage switching, dead time, low-power design
HSV kategori
Forskningsprogram
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-186514 (URN)10.1109/JSSC.2016.2561959 (DOI)000382169400017 ()2-s2.0-84986321427 (Scopus ID)
Prosjekter
Mi-SoC
Forskningsfinansiär
Swedish Research Council
Merknad

QC 20160517

Tilgjengelig fra: 2016-05-12 Laget: 2016-05-12 Sist oppdatert: 2019-02-08bibliografisk kontrollert
4. An Adaptive FET Sizing Technique for HighEfficiency Thermoelectric Harvesters
Åpne denne publikasjonen i ny fane eller vindu >>An Adaptive FET Sizing Technique for HighEfficiency Thermoelectric Harvesters
2016 (engelsk)Inngår i: 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo: IEEE, 2016, s. 504-507Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

A theoretical analysis of losses in low power thermoelectric harvester interfaces is used to find expressions for properly sizing the power transistors according to the input voltage level. These expressions are used to propose an adaptive FET sizing technique that tracks the input voltage level and automatically reconfigures the converter in order to improve its conversion efficiency. The performance of a low-power thermoelectric energy harvesting interface with and without the proposed technique is evaluated by circuit simulations under different input voltage/power conditions. The simulation results show that the proposed technique improves the conversion efficiency of the energy harvesting interface up to 12% at the lowest input voltage/power levels.

sted, utgiver, år, opplag, sider
Monte Carlo: IEEE, 2016
Emneord
Energy harvesting, thermoelectric harvesting, boost converter, adaptive FET sizing, low power CMOS design
HSV kategori
Forskningsprogram
Elektro- och systemteknik; Energiteknik
Identifikatorer
urn:nbn:se:kth:diva-203341 (URN)10.1109/ICECS.2016.7841249 (DOI)000399230200132 ()2-s2.0-85015291166 (Scopus ID)978-1-5090-6113-6 (ISBN)
Konferanse
2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, Monaco, Dec. 11-14, 2016.
Prosjekter
Mi-SoC
Forskningsfinansiär
Swedish Research Council
Merknad

QC 20170320

Tilgjengelig fra: 2017-03-15 Laget: 2017-03-15 Sist oppdatert: 2017-05-08bibliografisk kontrollert
5. A High-Efficiency Energy Harvesting Interface for Implanted Biofuel Cell and Thermal Harvesters
Åpne denne publikasjonen i ny fane eller vindu >>A High-Efficiency Energy Harvesting Interface for Implanted Biofuel Cell and Thermal Harvesters
2017 (engelsk)Inngår i: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 33, nr 5, s. 4125-4134, artikkel-id 7940053Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A dual-source energy harvesting interface that combines energy from implanted glucose biofuel cell and thermoelectric generator is presented. A single-inductor dual-input dual-output boost converter topology is employed to efficiently transfer the extracted power to the output. A dual-input feature enables the simultaneous maximum power extraction from two harvesters, while a dual-output allows a control circuit to perform complex digital functions at nW power levels. The control circuit reconfigures the converter to improve the efficiency and achieve zero-current and zero-voltage switching. The measurement results of the proposed boost converter, implemented in a 0.18 μm CMOS process, show a peak efficiency of 89.5% when both sources provide a combined input power of 66 μW. In the single-source mode, the converter achieves a peak efficiency of 85.2% at 23 μW for the thermoelectric source and 90.4% at 29 μW for the glucose biofuel cell. The converter can operate from minimum input voltages of 10 mV for the thermoelectric source and 30 mV for the glucose biofuel cell. 

sted, utgiver, år, opplag, sider
IEEE Press, 2017
Emneord
Energy harvesting, DC-DC power conversion, CMOS integrated circuits, thermoelectric energy conversion, fuel cells
HSV kategori
Forskningsprogram
Elektro- och systemteknik
Identifikatorer
urn:nbn:se:kth:diva-206586 (URN)10.1109/TPEL.2017.2712668 (DOI)000424832200039 ()2-s2.0-85041930625 (Scopus ID)
Prosjekter
Mi-SoC
Forskningsfinansiär
Swedish Research Council
Merknad

QC 20170508

Tilgjengelig fra: 2017-05-05 Laget: 2017-05-05 Sist oppdatert: 2018-05-24bibliografisk kontrollert

Open Access i DiVA

Doc_Thesis_JK(4335 kB)448 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4335 kBChecksum SHA-512
e690ac61dff2b3e4f1f29b8497ee7d03cf3f449f30708881788e35f40266f677fb54078ce9dfdb6f72d63b8e1d22c296873d1d2620793b4b193f2744a244472d
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Katic, Janko
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 448 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 4896 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf