Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Future of Automotive Localization Algorithms: Available, reliable, and scalable localization: Anywhere and anytime
Linköpings universitet, Institutionen för systemteknik, Reglerteknik. Linköpings universitet, Tekniska fakulteten. (Automatic Control)
Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för systemteknik, Reglerteknik. (Automatic Control)ORCID-id: 0000-0003-3270-171X
2017 (engelsk)Inngår i: IEEE signal processing magazine (Print), ISSN 1053-5888, E-ISSN 1558-0792, Vol. 34, nr 2, s. 60-69Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Most navigation systems today rely on global navigation satellite systems (gnss), including in cars. With support from odometry and inertial sensors, this is a sufficiently accurate and robust solution, but there are future demands. Autonomous cars require higher accuracy and integrity. Using the car as a sensor probe for road conditions in cloud-based services also sets other kind of requirements. The concept of the Internet of Things requires stand-alone solutions without access to vehicle data. Our vision is a future with both invehicle localization algorithms and after-market products, where the position is computed with high accuracy in gnss-denied environments. We present a localization approach based on a prior that vehicles spend the most time on the road, with the odometer as the primary input. When wheel speeds are not available, we present an approach solely based on inertial sensors, which also can be used as a speedometer. The map information is included in a Bayesian setting using the particle filter (PF) rather than standard map matching. In extensive experiments, the performance without gnss is shown to have basically the same quality as utilizing a gnss sensor. Several topics are treated: virtual measurements, dead reckoning, inertial sensor information, indoor positioning, off-road driving, and multilevel positioning.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2017. Vol. 34, nr 2, s. 60-69
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-135786DOI: 10.1109/MSP.2016.2637418ISI: 000397574300008Scopus ID: 2-s2.0-85015356723OAI: oai:DiVA.org:liu-135786DiVA, id: diva2:1083734
Prosjekter
Wallenberg Autonomous Systems Program
Merknad

Funding agencies: Wallenberg Autonomous Systems Program

Tilgjengelig fra: 2017-03-22 Laget: 2017-03-22 Sist oppdatert: 2017-04-21bibliografisk kontrollert

Open Access i DiVA

fulltext(3465 kB)1021 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3465 kBChecksum SHA-512
5a073d20a446db423fa447afbafd9e4d1ddf158074bd157ee7d055b121a56c822377ac191cd649f16faa57d3abafd8a30bffdfcb95965f28203e0bab60be5912
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Karlsson, RickardGustafsson, Fredrik
Av organisasjonen
I samme tidsskrift
IEEE signal processing magazine (Print)

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1021 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1641 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf