Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Boron compounds as additives to lubricants: synthesis, characterization and tribological optimization
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Sustainable Process Engineering.ORCID iD: 0000-0003-3652-7798
2009 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Developing new technological solutions, such as use of lightweight materials, less harmful fuels, controlled fuel combustion processes or more efficient exhaust gas after-treatment, are possible ways to reduce the environmental impact of machines. Both the reduction of wear and the friction control are key issues for decreasing of energy losses, improving efficiency and increasing of the life-span of an engine. Dialkyldithiophosphates (DTPs) of different metals have been extensively used as multifunctional additives in lubricants to control friction and reduce wear in mechanical systems. Among these DTP-compounds, zinc dialkyldithiophosphates (ZnDTPs) are the most common additives used for more than 60 years. These additives form protective films on steel surfaces and, thus, control friction and reduce wear. However, ZnDTPs contain zinc and large amounts of phosphorus and sulphur, which are human health hazards and cause environmental pollution by degrading catalytic converters in automobiles. Therefore, replacement of ZnDTPs byzinc free compounds with reduced amounts of sulphur and phosphorus are urgently needed.Boron-containing compounds are known as corrosion inhibitors, antioxidants, friction modifiers and effective anti-wear additives either dissolved in oil or as an insoluble and inorganic borate salts dispersed in oil in the nanoparticulate form. These compounds are emerging as attractive replacements for the compounds already used as additives in lubricants. The focus of the present work is on the development and tribological investigations of new boron compounds as highperformance additives in lubricants. These should be ashless with significantly reduced amounts sulphur and phosphorus, which is favourable for the environment protection. The work was carried out in the following steps: (1) Synthesis of new additives; (2) Characterization of the additives with FTIR, (1H, 13C, 31P, 11B) NMR spectroscopy, elemental analysis and thermal analysis (TG/DTG, DTA and QMS); (3) Tribological evaluation using four ball Tribometer; (4) Surface analysis using an optical profiler and Scanning Electron Microscopy coupled with X-ray Energy Dispersive Spectroscopy (SEM/EDS). It was found that the novel boroncompounds have considerably better antiwear performance and higher stability of the coefficient of friction with time as compared with ZnDTP. These novel compounds are ashless with reduced amounts of sulphur and phosphorus. They also have excellent tribological properties, high thermal stability, good miscibility with oils and positive environmental issues which make them an attractive alternative to ZnDTP.

Place, publisher, year, edition, pages
Luleå: Luleå tekniska universitet, 2009. , p. 61
Series
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
National Category
Physical Chemistry
Research subject
Chemistry of Interfaces
Identifiers
URN: urn:nbn:se:ltu:diva-17741Local ID: 4f5920e0-c2f9-11de-b769-000ea68e967bISBN: 978-91-7439-027-8 (print)OAI: oai:DiVA.org:ltu-17741DiVA, id: diva2:990746
Presentation
2009-11-25, F341, Luleå tekniska universitet, Luleå, 13:00
Available from: 2016-09-29 Created: 2016-09-29 Last updated: 2023-11-29Bibliographically approved

Open Access in DiVA

fulltext(6620 kB)6814 downloads
File information
File name FULLTEXT01.pdfFile size 6620 kBChecksum SHA-512
1ced1309a2c76205974717d6cdb5817595401030a04fed9b46511c25d1edd078c25d1476c9197ece3d3e08ebcd7b170ed6807d1ef6871db0dce3794ff45a1255
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Shah, Faiz Ullah
By organisation
Sustainable Process Engineering
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 6822 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 379 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf