Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Algebraic-diagrammatic construction scheme for the polarization propagator including ground-state coupled-cluster amplitudes. II. Static polarizabilities
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.ORCID iD: 0000-0002-1191-4954
2019 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 150, no 17, article id 174105Article in journal (Refereed) Published
Abstract [en]

The modification of the algebraic-diagrammatic construction (ADC) scheme for the polarization propagator using ground-state coupled-cluster (CC) instead of Møller-Plesset (MP) amplitudes, referred to as CC-ADC, is extended to the calculation of molecular properties, in particular, dipole polarizabilities. Furthermore, in addition to CC with double excitations (CCD), CC with single and double excitations (CCSD) amplitudes can be used, also in the second-order transition moments of the ADC(3/2) method. In the second-order CC-ADC(2) variants, the MP correlation coefficients occurring in ADC are replaced by either CCD or CCSD amplitudes, while in the F/CC-ADC(2) and F/CC-ADC(3/2) variants, they are replaced only in the second-order modified transition moments. These newly implemented variants are used to calculate the static dipole polarizability of several small- to medium-sized molecules, and the results are compared to the ones obtained by full configuration interaction or experiment. It is shown that the results are consistently improved by the use of CC amplitudes, in particular, for aromatic systems such as benzene or pyridine, which have proven to be difficult cases for standard ADC approaches. In this case, the second-order CC-ADC(2) and F/CC-ADC(2) variants yield significantly better results than the standard third-order ADC(3/2) method, at a computational cost amounting to only about 1% of the latter.

Place, publisher, year, edition, pages
American Institute of Physics Inc. , 2019. Vol. 150, no 17, article id 174105
Keywords [en]
Algebra, Cluster analysis, Ground state, Polarization, Algebraic diagrammatic constructions, Correlation coefficient, Dipole polarizabilities, Full configuration interaction, Medium-sized molecules, Second order transition, Static dipole polarizabilities, Static polarizabilities, Numerical methods
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-252468DOI: 10.1063/1.5081665ISI: 000467255500005Scopus ID: 2-s2.0-85065146754OAI: oai:DiVA.org:kth-252468DiVA, id: diva2:1337462
Note

QC 20190715

Available from: 2019-07-15 Created: 2019-07-15 Last updated: 2019-07-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Rehn, Dirk RobertNorman, Patrick
By organisation
Theoretical Chemistry and Biology
In the same journal
Journal of Chemical Physics
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf