Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards the application of UAS forroad maintenance at the Norvik Port
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

One of the vital processes for the maintenance of infrastructure is the collection of information about the inventory and current state of the infrastructure. Such activities are mostly done manually by the inspector in the field. However, Unmanned Aerial Vehicles (UAV) offer the possibilities to improving the accuracy, precision, and efficiency of those tasks. The present dissertation focusses on the evaluation of the requirements and possibilities for the incorporation of UAV in the assessment of port infrastructure, with an emphasis on pavement infrastructure. The first step to reach the goal of the research was the elaboration of an extensive literature review where the leading practices and trends for the use of Unmanned Aerial Systems (UAS) were identified. Based on the literature review, it was possible to propose a roadmap for the implementation of the UAS in the assessment of port infrastructure. The roadmap was implemented in a case study for the Norvik port in Stockholm while the restrictions and information allowed. This research produced several key findings. First, it was possible to recognize the lack of precise definitions in the pavement assessment, the faults in the current manual collection of pavement distresses and the voids in an investigation regarding the recognition of pavement defects different than cracking as some of the critical problems in the area. Additionally, the current applications like bridge and structural inspection, and available technologies like LiDAR or visual sensors were identified along with its improvement opportunities and restrictions. The key steps for the implementation of a UAS for assessing infrastructure were formulated as the identification of the needs and critical parameters, the selection of the UAS components, mainly the UAV and sensor, and the postprocessing of the data. The main conclusion drawn from the research is that it is possible to use UAS to assess the state of the infrastructure. However, not all UAS are suitable for all situations or necessities. The selection of the UA, according to the needs and limitations of the project, plays a vital role regarding the viability of implementation of a UAS for monitoring port infrastructure. The sufficiency of a UAS is closely related on its capability to acquire the information of the selected structures, with the required quality, and overcome the limitations, challenges, and restrictions of the site of application. As a way forward, the most important element to address is the implementation of Machine Learning (ML) techniques and Artificial Intelligence (AI) to extract the relevant features of the data automatically.

Place, publisher, year, edition, pages
2019.
Series
TRITA-ABE-MBT ; 19557
Keywords [en]
UAV, drones, pavement, port, infrastructure, monitoring, assessment, maintenance.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-254252OAI: oai:DiVA.org:kth-254252DiVA, id: diva2:1329881
Supervisors
Examiners
Available from: 2019-06-25 Created: 2019-06-25

Open Access in DiVA

fulltext(6594 kB)89 downloads
File information
File name FULLTEXT01.pdfFile size 6594 kBChecksum SHA-512
2652d745175b403896ab547ac6f628ba32222c4b1a903f1d8ea7186cf9c587eaafbe8144fe6f289c3ae556b3f217bff1d61d7fa89f4a963ec835cf3a99716d15
Type fulltextMimetype application/pdf

By organisation
Structural Engineering and Bridges
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 89 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 90 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf