Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Shock ripples observed by the MMS spacecraft: ion reflection and dispersive properties
Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.ORCID iD: 0000-0001-7714-1870
Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.ORCID iD: 0000-0003-1654-841x
Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.ORCID iD: 0000-0001-5550-3113
Show others and affiliations
2018 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, article id 125006Article in journal (Refereed) Published
Abstract [en]

Shock ripples are ion-inertial-scale waves propagating within the front region of magnetized quasi-perpendicular collisionless shocks. The ripples are thought to influence particle dynamics and acceleration at shocks. With the four magnetospheric multiscale (MMS) spacecraft, it is for the first time possible to fully resolve the small scale ripples in space. We use observations of one slow crossing of the Earth’s non-stationary bow shock by MMS. From multi-spacecraft measurements we show that the non-stationarity is due to ripples propagating along the shock surface. We find that the ripples are near linearly polarized waves propagating in the coplanarity plane with a phase speed equal to the local Alfvén speed and have a wavelength close to 5 times the upstream ion inertial length. The dispersive properties of the ripples resemble those of Alfvén ion cyclotron waves in linear theory. Taking advantage of the slow crossing by the four MMS spacecraft, we map the shock-reflected ions as a function of ripple phase and distance from the shock. We find that ions are preferentially reflected in regions of the wave with magnetic field stronger than the average overshoot field, while in the regions of lower magnetic field, ions penetrate the shock to the downstream region.

Place, publisher, year, edition, pages
2018. Vol. 60, article id 125006
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-253498DOI: 10.1088/1361-6587/aae920ISI: 000449418100001Scopus ID: 2-s2.0-85056350872OAI: oai:DiVA.org:kth-253498DiVA, id: diva2:1325405
Note

QC 20190710

Available from: 2019-06-15 Created: 2019-06-15 Last updated: 2019-07-10Bibliographically approved

Open Access in DiVA

fulltext(2619 kB)79 downloads
File information
File name FULLTEXT01.pdfFile size 2619 kBChecksum SHA-512
6be5241a96e509ef241d765c1f8d86773545819ee4bdd4716dbae42712dc45feca67a91538c92f325121270ba505f8c6f6941c862fcd209f49e22730e863d87d
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Johlander, AndreasVaivads, AndrisKhotyaintsev, Yuri V.
In the same journal
Plasma Physics and Controlled Fusion
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 79 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf