CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt174",{id:"formSmash:upper:j_idt174",widgetVar:"widget_formSmash_upper_j_idt174",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt175_j_idt177",{id:"formSmash:upper:j_idt175:j_idt177",widgetVar:"widget_formSmash_upper_j_idt175_j_idt177",target:"formSmash:upper:j_idt175:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Limit Laws, Homogenizable Structures and Their ConnectionsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Department of Mathematics, 2018. , p. 43
##### Series

Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 104
##### Keywords [en]

Model theory, random structure, finite model theory, simple theory, homogeneous structure, countably categorical, 0-1 law
##### National Category

Algebra and Logic
##### Research subject

Mathematical Logic; Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-330142ISBN: 978-91-506-2672-8 (print)OAI: oai:DiVA.org:uu-330142DiVA, id: diva2:1160702
##### Public defence

2018-02-16, Polhemssalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt482",{id:"formSmash:j_idt482",widgetVar:"widget_formSmash_j_idt482",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt488",{id:"formSmash:j_idt488",widgetVar:"widget_formSmash_j_idt488",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt494",{id:"formSmash:j_idt494",widgetVar:"widget_formSmash_j_idt494",multiple:true}); Available from: 2018-01-17 Created: 2017-11-28 Last updated: 2018-02-09
##### List of papers

Gränsvärdeslagar, Homogeniserbara Strukturer och Deras Samband (Swedish)

This thesis is in the field of mathematical logic and especially model theory. The thesis contain six papers where the common theme is the Rado graph R. Some of the interesting abstract properties of R are that it is simple, homogeneous (and thus countably categorical), has SU-rank 1 and trivial dependence. The Rado graph is possible to generate in a probabilistic way. If we let K be the set of all finite graphs then we obtain R as the structure which satisfy all properties which hold with assymptotic probability 1 in K. On the other hand, since the Rado graph is homogeneous, it is also possible to generate it as a Fraïssé-limit of its age.

Paper I studies the binary structures which are simple, countably categorical, with SU-rank 1 and trivial algebraic closure. The main theorem shows that these structures are all possible to generate using a similar probabilistic method which is used to generate the Rado graph. Paper II looks at the simple homogeneous structures in general and give certain technical results on the subsets of SU-rank 1.

Paper III considers the set K consisting of all colourable structures with a definable pregeometry and shows that there is a 0-1 law and almost surely a unique definable colouring. When generating the Rado graph we almost surely have only rigid structures in K. Paper IV studies what happens if the structures in K are only the non-rigid finite structures. We deduce that the limit structures essentially try to stay as rigid as possible, given the restriction, and that we in general get a limit law but not a 0-1 law.

Paper V looks at the Rado graph's close cousin the random t-partite graph and notices that this structure is not homogeneous but almost homogeneous. Rather we may just add a definable binary predicate, which hold for any two elemenets which are in the same part, in order to make it homogeneous. This property is called being homogenizable and in Paper V we do a general study of homogenizable structures. Paper VI conducts a special case study of the homogenizable graphs which are the closest to being homogeneous, providing an explicit classification of these graphs.

1. Simple structures axiomatized by almost sure theories$(function(){PrimeFaces.cw("OverlayPanel","overlay908140",{id:"formSmash:j_idt543:0:j_idt547",widgetVar:"overlay908140",target:"formSmash:j_idt543:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On sets with rank one in simple homogeneous structures$(function(){PrimeFaces.cw("OverlayPanel","overlay785724",{id:"formSmash:j_idt543:1:j_idt547",widgetVar:"overlay785724",target:"formSmash:j_idt543:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Random l-colourable structures with a pregeometry$(function(){PrimeFaces.cw("OverlayPanel","overlay1093452",{id:"formSmash:j_idt543:2:j_idt547",widgetVar:"overlay1093452",target:"formSmash:j_idt543:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Limit laws and automorphism groups of random nonrigid structures$(function(){PrimeFaces.cw("OverlayPanel","overlay798508",{id:"formSmash:j_idt543:3:j_idt547",widgetVar:"overlay798508",target:"formSmash:j_idt543:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Homogenizable structures and model completeness$(function(){PrimeFaces.cw("OverlayPanel","overlay973821",{id:"formSmash:j_idt543:4:j_idt547",widgetVar:"overlay973821",target:"formSmash:j_idt543:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. >k-homogeneous infinite graphs$(function(){PrimeFaces.cw("OverlayPanel","overlay1144583",{id:"formSmash:j_idt543:5:j_idt547",widgetVar:"overlay1144583",target:"formSmash:j_idt543:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1237",{id:"formSmash:j_idt1237",widgetVar:"widget_formSmash_j_idt1237",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1290",{id:"formSmash:lower:j_idt1290",widgetVar:"widget_formSmash_lower_j_idt1290",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1291_j_idt1293",{id:"formSmash:lower:j_idt1291:j_idt1293",widgetVar:"widget_formSmash_lower_j_idt1291_j_idt1293",target:"formSmash:lower:j_idt1291:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});