Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Retrieval of Cloud Top Pressure
Linköpings universitet, Institutionen för datavetenskap. Linköpings universitet, Tekniska fakulteten.
2016 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

In this thesis the predictive models the multilayer perceptron and random forest are evaluated to predict cloud top pressure. The dataset used in this thesis contains brightness temperatures, reflectances and other useful variables to determine the cloud top pressure from the Advanced Very High Resolution Radiometer (AVHRR) instrument on the two satellites NOAA-17 and NOAA-18 during the time period 2006-2009. The dataset also contains numerical weather prediction (NWP) variables calculated using mathematical models. In the dataset there are also observed cloud top pressure and cloud top height estimates from the more accurate instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The predicted cloud top pressure is converted into an interpolated cloud top height. The predicted pressure and interpolated height are then evaluated against the more accurate and observed cloud top pressure and cloud top height from the instrument on the satellite CALIPSO.

The predictive models have been performed on the data using different sampling strategies to take into account the performance of individual cloud classes prevalent in the data. The multilayer perceptron is performed using both the original response cloud top pressure and a log transformed repsonse to avoid negative values as output which is prevalent when using the original response. Results show that overall the random forest model performs better than the multilayer perceptron in terms of root mean squared error and mean absolute error.

Ort, förlag, år, upplaga, sidor
2016. , 77 s.
Nyckelord [en]
neural networks, multilayer perceptron, random forest regression, cloud top pressure, cloud top height
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-129805ISRN: LIU-IDA/STAT-A--16/006—SEOAI: oai:DiVA.org:liu-129805DiVA: diva2:944014
Externt samarbete
Swedish Meteorological and Hydrological Institute (SMHI)
Ämne / kurs
Statistik
Handledare
Examinatorer
Tillgänglig från: 2016-06-29 Skapad: 2016-06-28 Senast uppdaterad: 2016-06-29Bibliografiskt granskad

Open Access i DiVA

Retrieval of Cloud Top Pressure(639 kB)222 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 639 kBChecksumma SHA-512
0211c760aef3fdc60a1a911a23eba430edd71ec3d4f5a8928ab0d2ba8e5440e4fc9c8eefa911d5ac510ab640609ba87d6dded6bdd31e1c8dfa34c538d1204f4c
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskapTekniska fakulteten
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 222 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

Totalt: 809 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf