Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Biopolymer hybrid electrodes for scalable electricity storage
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten. University of Addis Ababa, Ethiopia.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
2016 (Engelska)Ingår i: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 3, nr 3, 174-185 s.Artikel, forskningsöversikt (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Powering the future, while maintaining a cleaner environment and a strong socioeconomic growth, is going to be one of the biggest challenges faced by mankind in the 21st century. The first step in overcoming the challenge for a sustainable future is to use energy more efficiently so that the demand for fossil fuels can be reduced drastically. The second step is a transition from the use of fossil fuels to renewable energy sources. In this sense, organic electrode materials are becoming increasingly attractive compared to inorganic electrode materials which have reached a plateau regarding performance and have severe drawbacks in terms of cost, safety and environmental friendliness. Using organic composites based on conducting polymers, such as polypyrrole, and abundant, cheap and naturally occurring biopolymers rich in quinones, such as lignin, has recently emerged as an interesting alternative. These materials, which exhibit electronic and ionic conductivity, provide challenging opportunities in the development of new charge storage materials. This review presents an overview of recent developments in organic biopolymer composite electrodes as renewable electroactive materials towards sustainable, cheap and scalable energy storage devices.

Ort, förlag, år, upplaga, sidor
ROYAL SOC CHEMISTRY , 2016. Vol. 3, nr 3, 174-185 s.
Nationell ämneskategori
Annan naturresursteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-128741DOI: 10.1039/c5mh00261cISI: 000375296600002OAI: oai:DiVA.org:liu-128741DiVA: diva2:931963
Anmärkning

Funding Agencies|Knut and Alice Wallenberg Foundation; Wallenberg Scholar grant

Tillgänglig från: 2016-05-31 Skapad: 2016-05-30 Senast uppdaterad: 2017-03-31
Ingår i avhandling
1. Biohybrid Polymer Electrodes for Renewable Energy Storage
Öppna denna publikation i ny flik eller fönster >>Biohybrid Polymer Electrodes for Renewable Energy Storage
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Daily and seasonally fluctuating energy supply and demand requires adequate energy storage solutions. In recent years electrochemical supercapacitors have attracted considerable attention due to their ability to both store and deliver electrical energy efficiently. Our efforts are focused on developing and optimizing sustainable organic electrode materials for supercapacitors based on renewable bioorganic materials, offering a cheap, environmentally friendly and scalable alternative to store energy. In particular, we are using the second most abundant biopolymer in nature, lignin (Lig), which is an insulating material. However, when used in combination with electroactive and conducting polymers such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), the biohybrid electrodes PPy/Lig and PEDOT/Lig display significantly enhanced energy storage performance as compared to the pristine conducting polymers without the lignin. Redox cyclic voltammetry and galvanostatic charge/discharge measurements indicate that the enhanced performance is due to the additional pseudocapacitance generated by the quinone moieties in lignin. Moreover, a conjugated redoxpolymer poly(aminoanthraquinone) PAAQ, with intrinsic quinone functions and excellentstability, has been combined with lignin and PEDOT resulting in a trihybrid bioelectrode. PEDOT compensates the low conductivity of PAAQ and provides electrical pathways to the quinone groups. The electrochemically generated quinones undergo a two electron, two protonredox process within the biohybrid electrodes as revealed by FTIR spectroelectrochemistry.These remarkable features reveal the exciting potential of a full organic energy storage device with long cycle life. Therefore, supercapacitor devices were designed in symmetric or asymmetric two electrode configuration. The best electrochemical performance was achieved by the asymmetric supercapacitor based on PEDOT+Lignin/PAAQ as the positive electrode and PEDOT/PAAQ as the negative electrode. This device exhibits superior electrochemical performance and outstanding stability after 10000 charge/discharge cycles due to the synergistic effect of the two electrodes. Finally, we have characterized the response of this supercapacitor device when charged with the intermittent power supply from an organic photovoltaic module. We have designed charging/discharging conditions such that reserve power was available in the storage device at all times. This work has resulted in an inexpensive fully organic system witht he dual function of energy conversion and storage.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. 64 s.
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1834
Nationell ämneskategori
Energisystem Förnyelsebar bioenergi Energiteknik Materialkemi
Identifikatorer
urn:nbn:se:liu:diva-136156 (URN)9789176855737 (ISBN)
Disputation
2017-04-27, Plank, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-03-31 Skapad: 2017-03-31 Senast uppdaterad: 2017-03-31Bibliografiskt granskad

Open Access i DiVA

fulltext(2782 kB)64 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2782 kBChecksumma SHA-512
76df449e892e4299f56233ea448904c131f8561733be3dbc844b4e49a05a72c33269f1c77948ee9f785b7719e44876ca510d7be0c75d3e955c2514cd3d42380d
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Admassie, ShimelisAjjan, FátimaElfwing, AndersInganäs, Olle
Av organisationen
Biomolekylär och Organisk ElektronikTekniska fakulteten
I samma tidskrift
Materials Horizons
Annan naturresursteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 64 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

Altmetricpoäng

Totalt: 337 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf