Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Multi-parameter Complexity Analysis of Cost-optimal and Net-benefit Planning
Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska fakulteten. (TCSLAB)
Linköpings universitet, Institutionen för datavetenskap, Programvara och system. Linköpings universitet, Tekniska fakulteten. (TCSLAB)
2016 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Aghighi and Bäckström have previously studied cost-optimal planning (COP) and net-benefit planning (NBP) for three action cost domains: the positive integers (Z_+), the non-negative integers (Z_0) and the positive rationals (Q_+). These were indistinguishable under standard complexity analysis for both problems, but separated for COP using parameterised complexity analysis. With the plan cost, k, as parameter, COP was W[2]-complete for Z_+, but para-NP-hard for both Z_0 and Q_+, i.e. presumably much harder. NBP was para-NP-hard for all three domains, thus remaining unseparable. We continue by considering combinations with several additional parameters and also the non-negative rationals (Q_0). Examples of new parameters are the plan length, l, and the largest denominator of the action costs, d. Our findings include: (1) COP remains W[2]-hard for all domains, even if combining all parameters; (2) COP for Z_0 is in W[2] for the combined parameter {k,l}; (3) COP for Q_+ is in W[2] for {k,d} and (4) COP for Q_0 is in W[2] for {k,d,l}. For NBP we consider further additional parameters, where the most crucial one for reducing complexity is the sum of variable utilities. Our results help to understand the previous results, eg. the separation between Z_+ and Q_+ for COP, and to refine the previous connections with empirical findings.

Ort, förlag, år, upplaga, sidor
AAAI Press, 2016. 2-10 s.
Nyckelord [en]
cost-optimal planning, parameterised complexity, numeric domains
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:liu:diva-136278ISBN: 9781577357575 OAI: oai:DiVA.org:liu-136278DiVA: diva2:1087081
Konferens
Twenty-Sixth International Conference on Automated Planning and Scheduling (ICAPS-16)
Tillgänglig från: 2017-04-05 Skapad: 2017-04-05 Senast uppdaterad: 2017-10-06
Ingår i avhandling
1. Computational Complexity of some Optimization Problems in Planning
Öppna denna publikation i ny flik eller fönster >>Computational Complexity of some Optimization Problems in Planning
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Automated planning is known to be computationally hard in the general case. Propositional planning is PSPACE-complete and first-order planning is undecidable. One method for analyzing the computational complexity of planning is to study restricted subsets of planning instances, with the aim of differentiating instances with varying complexity. We use this methodology for studying the computational complexity of planning. Finding new tractable (i.e. polynomial-time solvable) problems has been a particularly important goal for researchers in the area. The reason behind this is not only to differentiate between easy and hard planning instances, but also to use polynomial-time solvable instances in order to construct better heuristic functions and improve planners. We identify a new class of tractable cost-optimal planning instances by restricting the causal graph. We study the computational complexity of oversubscription planning (such as the net-benefit problem) under various restrictions and reveal strong connections with classical planning. Inspired by this, we present a method for compiling oversubscription planning problems into the ordinary plan existence problem. We further study the parameterized complexity of cost-optimal and net-benefit planning under the same restrictions and show that the choice of numeric domain for the action costs has a great impact on the parameterized complexity. We finally consider the parameterized complexity of certain problems related to partial-order planning. In some applications, less restricted plans than total-order plans are needed. Therefore, a partial-order plan is being used instead. When dealing with partial-order plans, one important question is how to achieve optimal partial order plans, i.e. having the highest degree of freedom according to some notion of flexibility. We study several optimization problems for partial-order plans, such as finding a minimum deordering or reordering, and finding the minimum parallel execution length.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. 35 s.
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1854
Nationell ämneskategori
Datorsystem
Identifikatorer
urn:nbn:se:liu:diva-136280 (URN)10.3384/diss.diva-136280 (DOI)978-91-7685-519-5 (ISBN)
Disputation
2017-06-16, Ada Lovelace, B-hus, Linköping University, SE-58183 Linköping, Linköping, 13:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
CUGS (National Graduate School in Computer Science)
Tillgänglig från: 2017-05-17 Skapad: 2017-04-05 Senast uppdaterad: 2017-09-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas

Övriga länkar

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13001/12655

Sök vidare i DiVA

Av författaren/redaktören
Aghighi, MeysamBäckström, Christer
Av organisationen
Programvara och systemTekniska fakulteten
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 582 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf