Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multi-channel ECG classification using forests of randomized shapelet trees
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2015 (Engelska)Ingår i: Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Association for Computing Machinery (ACM), 2015, 43Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Data series of multiple channels occur at high rates and in massive quantities in several application domains, such as healthcare. In this paper, we study the problem of multi-channel ECG classification. We map this problem to multivariate data series classification and propose five methods for solving it, using a split-and-combine approach. The proposed framework is evaluated using three base-classifiers on real-world data for detecting Myocardial Infarction. Extensive experiments are performed on real ECG data extracted from the Physiobank data repository. Our findings emphasize the importance of selecting an appropriate base-classifier for multivariate data series classification, while demonstrating the superiority of the Random Shapelet Forest (0.825 accuracy) against competitor methods (0.664 accuracy for 1-NN under cDTW).

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery (ACM), 2015. 43
Nyckelord [en]
Data series, classification, multi-channel
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik
Forskningsämne
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-122846DOI: 10.1145/2769493.2769520ISBN: 978-1-4503-3452-5 (digital)OAI: oai:DiVA.org:su-122846DiVA: diva2:868518
Konferens
PETRA '15, 8th Pervasive Technologies Related to Assistive Environments, Corfu, Greece, July 01 - 03, 2015
Tillgänglig från: 2015-11-11 Skapad: 2015-11-10 Senast uppdaterad: 2017-04-28Bibliografiskt granskad
Ingår i avhandling
1. Order in the random forest
Öppna denna publikation i ny flik eller fönster >>Order in the random forest
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In many domains, repeated measurements are systematically collected to obtain the characteristics of objects or situations that evolve over time or other logical orderings. Although the classification of such data series shares many similarities with traditional multidimensional classification, inducing accurate machine learning models using traditional algorithms are typically infeasible since the order of the values must be considered.

In this thesis, the challenges related to inducing predictive models from data series using a class of algorithms known as random forests are studied for the purpose of efficiently and effectively classifying (i) univariate, (ii) multivariate and (iii) heterogeneous data series either directly in their sequential form or indirectly as transformed to sparse and high-dimensional representations. In the thesis, methods are developed to address the challenges of (a) handling sparse and high-dimensional data, (b) data series classification and (c) early time series classification using random forests. The proposed algorithms are empirically evaluated in large-scale experiments and practically evaluated in the context of detecting adverse drug events.

In the first part of the thesis, it is demonstrated that minor modifications to the random forest algorithm and the use of a random projection technique can improve the effectiveness of random forests when faced with discrete data series projected to sparse and high-dimensional representations. In the second part of the thesis, an algorithm for inducing random forests directly from univariate, multivariate and heterogeneous data series using phase-independent patterns is introduced and shown to be highly effective in terms of both computational and predictive performance. Then, leveraging the notion of phase-independent patterns, the random forest is extended to allow for early classification of time series and is shown to perform favorably when compared to alternatives. The conclusions of the thesis not only reaffirm the empirical effectiveness of random forests for traditional multidimensional data but also indicate that the random forest framework can, with success, be extended to sequential data representations.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Computer and Systems Sciences, Stockholm University, 2017. 76 s.
Serie
Report Series / Department of Computer & Systems Sciences, ISSN 1101-8526 ; 17-004
Nyckelord
Machine learning, random forest, ensemble, time series, data series, sequential data, sparse data, high-dimensional data
Nationell ämneskategori
Data- och informationsvetenskap
Forskningsämne
data- och systemvetenskap
Identifikatorer
urn:nbn:se:su:diva-142052 (URN)978-91-7649-827-9 (ISBN)978-91-7649-828-6 (ISBN)
Disputation
2017-06-08, L30, NOD-huset, Borgarfjordsgatan 12, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), IIS11-0053
Tillgänglig från: 2017-05-16 Skapad: 2017-04-24 Senast uppdaterad: 2017-05-15Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Karlsson, IsakPapapetrou, PanagiotisAsker, Lars
Av organisationen
Institutionen för data- och systemvetenskap
Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

Altmetricpoäng

Totalt: 56 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf