Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Autonomic Software Product Lines (ASPL)
Linnaeus University, Faculty of Science and Engineering, School of Computer Science, Physics and Mathematics.
Linnaeus University, Faculty of Science and Engineering, School of Computer Science, Physics and Mathematics.ORCID iD: 0000-0001-5471-551X
Linnaeus University, Faculty of Science and Engineering, School of Computer Science, Physics and Mathematics.ORCID iD: 0000-0002-7565-3714
2010 (English)In: ECSA '10 Proceedings of the Fourth European Conference on Software Architecture: Companion Volume / [ed] Carlos E. Cuesta, ACM Press, 2010, p. 324-331Conference paper, Published paper (Refereed)
Abstract [en]

We describe ongoing work on a variability mechanism for Autonomic Software Product Lines (ASPL). The autonomic software product lines have self-management characteristics that make product line instances more resilient to context changes and some aspects of product line evolution. Instances sense the context, selects and bind the best component variants to variation-points at run-time. The variability mechanism we describe is composed of a profile guided dispatch based on off-line and on-line training processes. Together they form a simple, yet powerful variability mechanism that continuously learns, which variants to bind given the current context and system goals.

Place, publisher, year, edition, pages
ACM Press, 2010. p. 324-331
National Category
Computer Sciences
Research subject
Computer and Information Sciences Computer Science, Computer Science
Identifiers
URN: urn:nbn:se:lnu:diva-7157DOI: 10.1145/1842752.1842812Scopus ID: 2-s2.0-78149405707ISBN: 978-1-4503-0179-4 (print)OAI: oai:DiVA.org:lnu-7157DiVA, id: diva2:343231
Conference
4th European Conference on Software Architecture (ECSA 2010)
Available from: 2010-08-12 Created: 2010-08-12 Last updated: 2018-05-21Bibliographically approved
In thesis
1. Designing Self-Adaptive Software Systems with Reuse
Open this publication in new window or tab >>Designing Self-Adaptive Software Systems with Reuse
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modern software systems are increasingly more connected, pervasive, and dynamic, as such, they are subject to more runtime variations than legacy systems. Runtime variations affect system properties, such as performance and availability. The variations are difficult to anticipate and thus mitigate in the system design.

Self-adaptive software systems were proposed as a solution to monitor and adapt systems in response to runtime variations. Research has established a vast body of knowledge on engineering self-adaptive systems. However, there is a lack of systematic process support that leverages such engineering knowledge and provides for systematic reuse for self-adaptive systems development. 

This thesis proposes the Autonomic Software Product Lines (ASPL), which is a strategy for developing self-adaptive software systems with systematic reuse. The strategy exploits the separation of a managed and a managing subsystem and describes three steps that transform and integrate a domain-independent managing system platform into a domain-specific software product line for self-adaptive software systems.

Applying the ASPL strategy is however not straightforward as it involves challenges related to variability and uncertainty. We analyzed variability and uncertainty to understand their causes and effects. Based on the results, we developed the Autonomic Software Product Lines engineering (ASPLe) methodology, which provides process support for the ASPL strategy. The ASPLe has three processes, 1) ASPL Domain Engineering, 2) Specialization and 3) Integration. Each process maps to one of the steps in the ASPL strategy and defines roles, work-products, activities, and workflows for requirements, design, implementation, and testing. The focus of this thesis is on requirements and design.

We validate the ASPLe through demonstration and evaluation. We developed three demonstrator product lines using the ASPLe. We also conducted an extensive case study to evaluate key design activities in the ASPLe with experiments, questionnaires, and interviews. The results show a statistically significant increase in quality and reuse levels for self-adaptive software systems designed using the ASPLe compared to current engineering practices.

Place, publisher, year, edition, pages
Växjö: Linnaeus University Press, 2018. p. 56
Series
Linnaeus University Dissertations ; 318/2018
Keywords
Variability, Uncertainty, Self-Adaptation, Software Reuse, Software Design, Methodology, Domain Engineering.
National Category
Software Engineering Computer Sciences Computer and Information Sciences
Research subject
Computer and Information Sciences Computer Science, Computer Science; Computer and Information Sciences Computer Science; Computer Science, Software Technology
Identifiers
urn:nbn:se:lnu:diva-74443 (URN)978-91-88761-51-4 (ISBN)978-91-88761-52-1 (ISBN)
Public defence
2018-04-19, 13:15 (English)
Supervisors
Available from: 2018-05-22 Created: 2018-05-21 Last updated: 2018-05-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Abbas, NadeemAndersson, JesperLöwe, Welf
By organisation
School of Computer Science, Physics and Mathematics
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 602 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf