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ABSTRACT

This thesis presents the foundations of a method for estimating fibre properties of pulp suitable
for online application in the pulp and paper industry.

In the pulp and paper industry, increased efficiency and greater paper quality control are
two of the industry’s main objectives. It is proposed that online fibre property measurements
are a means of achieving progress in both of these objectives.

Optical based systems that provide valuable geometric data on the fibres and other pulp
characteristics are commercially available. However, measurements of the elastic properties of
the fibres are not feasible using these systems.

To fill this gap an ultrasound based system for measuring the elastic properties of the
wood fibres in pulp is proposed. Ultrasound propagation through a medium depends on its
elastic properties. Thus the attenuation of an ultrasonic wave propagating through pulp will
be affected by the elastic properties of the wood fibres. The method is based on solving the
inverse problem where the output is known and the objective is to establish the inputs. In
this case, attenuation is measured and a model of attenuation based on ultrasound scattering
is developed. A search algorithm is used for finding elastic properties that minimize the error
between the model and measured attenuation. The results of the search are estimates of the
elastic properties of the fibres in suspension.

The results show resonance peaks in the attenuation in the frequency region tested. These
peaks are found in both the measured and modelled attenuation spectra. Further investigation
of these resonances suggests that they are due to modes of vibration in the fibre. These
resonances are shown to aid in the identification of the elastic properties.

The attenuation is found to depend heavily on the geometry of the fibres. Hence fibre
geometry, which can be obtained from online optical fibre measurement system, provides the
key to extracting the elastic properties from the attenuation signal.

Studies are also carried out on the effect of viscosity on attenuation as well as the differences
in attenuation between hollow and solid synthetic fibres in suspensions. The measurement
method is also applied to hardwood and softwood kraft pulps. The results of these studies
show that using the model derived in the thesis and attenuation measurements, estimates of
the elastic properties can be obtained. The elastic property estimates for synthetic fibres agree
well with values from other methods. These elastic property estimates for pulps agree well with
previous studies of individual fibre tests though further validation is required.

The conclusions, based on the work so far and under three realizable conditions, are that
the shear modulus and the transverse Young’s modulus of pulp fibres can be measured. Once
these conditions are met, a system based on this method can be implemented. By doing this
the industry would benefit from the increase in paper quality control and energy saving such
system could provide.
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CHAPTER 1

Introduction

Paper products are an essential part of our daily lives and the paper and pulp industry,
which provide these products, is a cornerstone of World industry. In 2007, the European
pulp and paper industry employed 260 000 people, produced 100 million tonnes of paper,
40 million tonnes of pulp and had a turnover of €80 billion. This accounted for 26% and
23% of the World’s paper and pulp production, respectively [1]. It is a mature industry
striving to adapt to the new demands of customers and to take advantage of its access
to forest-based energy resources.

The energy consumption of the paper industry is high. In countries belonging to the
Confederation of European Paper Industries (CEPI) this was 1.3 million TJ' in 2006 [1].
Increased efficiency is therefore an obvious means of reducing costs as not only does this
reduce the amount of energy, which has to be bought, but any energy by-products from
the process can be sold. This is exemplified by the S6dra business strategy that states
that energy is becoming an increasingly important element of operations [2].

One of the most energy intensive parts of the pulp manufacturing process is the
refining of the pulp. In a typical plant this uses 1 GJ per tonne dry material [3]. Hence
increased efficiency in this part of the process can have a large economic impact.

Online fibre property measurement could improve energy efficiency and optimise pa-
per quality, for example:

1. In the refiner by allowing the refining energy level to be set according to the par-
ticular fibre properties or by reducing the percentage of fibres refined, if the fibres
already have suitable properties.

2. By reducing waste - early detection of faults associated with the fibre properties
can allow the pulp to be reprocessed at an earlier stage in the paper manufacturing.

3. Paper quality could be optimised by improving fractionation of the pulp. The aim
of fractionation is to separate the pulp according to its properties. With online

11.10'® Joules



2 INTRODUCTION

fibre property measurement the fractionation process can be improved. These im-
provements would lead to the fibres, and hence the pulp, being better suited to the
end product.

Optical fibre property measurements are currently available and their use in improving
paper quality is shown by Hagedorn [4]. The flexibility of the fibres is an important
property since greater flexibility increases the strength of the paper. This flexibility
depends on both geometry and Young’s modulus [5]. In optical systems such as the STFI
Fibermaster, (Lorentsen-Wettre, Sweden) [6], bendibility is used as a relative measure of
flexibility. However, using this measure the influence of bendibility cannot be separated
from the geometry since they are interdependent variables [4]. The consequence of this
is that there is ambiguity as to whether it is the elastic properties of the fibre (such as
Young’s modulus) or the geometry that needs to be modified by the process.

Ultrasound measurements have the potential to measure the elastic properties of the
fibres in suspension. This is because ultrasound propagation is a function of these elastic
properties. If an ultrasound method can measure elastic properties then a future paper
manufacturing plant could have sensors based on this technology at crucial stages in the
process. This would work alongside an online optical pulp analyser providing geometric
fibre data. The result would be increased process efficiency, which results in reduced
energy usage, and greater paper quality control. Thus profit margins are increased.

In addition, if the optical and ultrasound sensors were combined with an online paper
measurement system, such as a laser ultrasonic web stiffness sensor [7], it would allow the
relationship between pulp properties and paper quality to be more precisely established.

The objective of this thesis is to provide the first step towards an online method of
measuring the elastic properties of fibres. Hence, the following hypothesis is tested:

The measurement of the ultrasound attenuation can be used to estimate the
elastic properties of wood fibres in pulp online.

This hypothesis can be broken down into three research questions,
1. Can elastic properties be estimated from ultrasound attenuation?
2. Can the method be applied to wood fibres in pulp?

3. Can the measurement method be used online?

Can elastic properties be estimated from ultrasound attenuation?

The method of estimating the elastic properties from ultrasound attenuation consists of
three parts: a model, measurements and an algorithm for finding the parameters of the
model that minimizes the difference between the model output and the measurements.
Since the method is to be applied to wood fibres in pulp, the model is based on the
acoustic scattering of particles in suspension (Chapters 3 & 5). The measurements are of
ultrasound attenuation. The algorithm searches through the range of elastic properties
to find the values that minimize the difference between the modelled attenuation and the



measured attenuation. The outcome of the algorithm, being the estimates of the elastic
properties, gives the best-fit to measured attenuation (Chapter 6).

This question is central to the thesis and is addressed in all the papers as well as the
chapters specified in the text.

Can the method be applied to wood fibres in pulp?

To apply this method to pulp a model is required, which captures only the wood fibre
properties that are important to attenuation. From this, the elastic properties of the
fibres can be extracted.

Again this question is central to the thesis but is particularly addressed in the final
paper, Paper G and Chapter 2.

Can the method be used online?

The ultimate aim is to have an online method. This will influence decisions about the
complexity of the model chosen. Hence, the need to establish the simplest model that
will allow estimates of the elastic fibre properties to be made. Consideration should also
be made of the computational efficiency of such a method and the equipment required.

The thesis is made up of two parts: a summary of the work and a collection of papers. The
first part presents more detailed information on wood fibres in pulp and the background
physics, followed by more detailed issues not covered in the scientific papers. The papers
are then summarised before conclusions are drawn and further work is discussed. The
second part is a collection of seven papers.






CHAPTER 2

Fibres in Pulp

2.1 Fibres and the effects of processing

Paper in the broadest sense of the word dates back to the ancient Egyptians who used the
papyrus plant to make sheets on which to write. Our modern day paper making however,
has its roots in China, possibly as early as 8 BC [8]. The basic steps are gathering the
raw material, breaking it down to a pulp with the addition of water then forming it into
a sheet before drying it. Although these steps may not have changed, the process is
now high speed (up to 1,900 m/min [9]), high volume, and fully automated. The huge
variations in the processes and the type of wood or even the organic and non-organic
material used as input in the process reflect the differences required in the final products.
The focus of this research is on the measurement of the properties of fibres used in the
manufacture of paper products; more specifically wood fibre properties because wood is
by far the most common source of fibres used in paper making.

Before discussing fibre property measurements and the effect the pulp process has on
their properties it is worthwhile introducing some of the elements of the fibre that are
important to its mechanical properties.

A wood fibre has a layered structure as shown in figure 2.1. The hollow in the
centre of the fibre is called the lumen and the outer edge of the fibre is the primary cell
wall. In wood, the fibres are held together by the middle lamella which is also shown in
the diagram. The lines on the primary cell wall and secondary walls (s1, s2 and s3 in
the diagram) illustrate fibrils that are part of the cell walls. Fibrils or microfibrils are
made of cellulose molecules and their orientation, as indicated in the diagram, can vary
considerably. The s2 layer has fibrils that are parallel and form a steep spiral about the
axis of the fibre. The microfibrillar angle (MFA) of this layer has been measured and has
been found to relate to the strength of individual fibres [10]. These results show that the
more axially aligned the microfibrils (smaller MFA), the greater the strength of the fibres.
On a larger scale, the MFA has been related to the Young’s modulus of wood where a
decrease in MFA correlates to increased stiffness (higher modulus) [11]. Interpreting
the data on individual fibre measurements [12] shows that when MFA decreases, the

5
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Lumen (hollow)

S3,inner cell wall

e $2, middle secondary cell wall

S1,outer secondary wall

/ Primary cell wall

/Middle lamella

Figure 2.1: Illustration of the layered structure of a fibre [13]

Table 2.1: Table of fibre geometry

Swedish Pine Birch
Earlywood Latewood
Fibre width (pm) 35 25 22
Lumen diameter (pm) 30 10 16
Fibre length (pm) 2500-4900 1000-1500

Young’s modulus increases but this relationship is not clear because the fibre perimeter
also decreases and thus would cause the modulus to increase.

The geometry of the fibres affects the properties of the paper produced. For example,
long thin-walled fibres, as found in earlywood, provide good strength since their com-
pliance and length means that they form a better bond between the fibres. However,
the resulting paper will also have a low bending stiffness. In contrast, thick-walled fi-
bres, from latewood, give high bending stiffness but their rigidity results in weaker bonds
between the fibres and hence ultimately weaker paper [13].

In trees, fibre geometry varies not only from species to species but also within a
species since the thickness of the wall depends on the age of the wood. A young tree
will have mainly earlywood and hence long slender fibres, whereas a mature tree will
have earlywood near the top and towards the outer edge of the trunk. Table 2.1 with
data taken from [13], gives an example of the variation of the geometry of earlywood and
latewood fibres.

The table also illustrates the geometrical differences between hardwoods and soft-
woods. Birch, acacia and eucalyptus are all examples of hardwood trees often used in
making fine paper. Softwoods include species such as pine and spruce. There are also
differences in their chemical composition of which will not be discussed here.

Pulp manufacturing is the method by which the fibres are extracted from wood. There
are two basic types of pulp manufacturing: chemical and mechanical. In a typical chemi-
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Figure 2.2: Simplified process diagram of a chemical pulp process (no bleach)

cal pulp manufacturing process, illustrated in figure 2.2, the wood is cooked in a solution
of chemicals. The lignin of the wood is made soluble (digested) and the fibres separate
as whole fibres. These softened fibres are then fed at high pressure into a refiner (refining
process) where they are mechanically beaten. In a typical mechanical pulp manufacturing
process, the wood fibres are exposed to heat and pressure (thermomechanical pulps [14])
before being separated by grinding or milling. These pulps can then be refined to improve
the fibre properties for paper making. An overview of these different processes and the
variations that exist between them is provided by Wikstrom [15] and Karlsson [13].
From the brief description of pulp manufacturing, it is obvious that one of the fun-
damental steps in making paper is the mechanical treatment of the fibres, typically in
the refiner. One of the objectives of this stage is to fibrillate the fibre. This is where
the fibres are beaten to increase their flexibility and their ability to swell, before paper
formation [16]. There is some evidence to show that this increased flexibility is indepen-
dent of geometry and hence due to elasticity of the fibre wall [17]. Collapsing of the fibre
structure, so that the fibres have a ribbon geometry results in greater paper strength [13].
The relationship between flexibility and collapsed fibres is expected since in theory,

F=1/EI (2.1)

where F' is the flexibility, F is the Young’s modulus and [ is the second moment of
area [12]. If the fibre collapses, then I decreases and consequently F' increases. From
the equation it can been seen that the elastic modulus of the fibre is important in fibre
flexibility directly. It could also have an indirect affect since from general studies of hollow
cylinders [18], low E values lead to an increased tendency to collapse. Since collapsed
fibres are more flexible it follows then low E will both directly and indirectly lead to
greater fibre flexibility and hence stronger paper.

Refining also causes some of the microfibrils to be either released from the cell wall
or bowed out. This increases the bonding of the fibres to each other, increases the
strength of the paper and its homogeneity [10]. The relationship between the frequency
of refining and the viscoelastic properties of water saturated lignin, which is related
to the viscoelasticity of the fibres since they are composed on lignin, has also been
investigated [19]. Although it was found that refining frequencies would not soften the
lignin, the study does provide some data on the viscoelasticity of saturated wood and
hence to some degree fibres.
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Figure 2.3: Examples of refined fibres in pulp: 2.3(b) Softwood fibres from chemical pulp (mag-
nification x75), 2.3(a) Cross section of fibre in softwood chemical pulp showing two collapsed
fibres. 2.3(c) Hardwood chemical pulp (bleached), 2.3(d) Softwood chemical pulp

Figure 2.3 are photographs of refined pulp fibres. Figure 2.3(a) illustrates their vari-
ability along the their length. Note also from the photograph and the dimensions given
in Table 2.1 that the length is much greater than the fibre diameter, which is the reason
for the assumption of infinite length used in the model. Figure 2.3(c) and 2.3(d) are at
higher magnification and show the cross sectional variation between a hardwood pulp
and a softwood pulp, respectively.

The cross sectional view of a group of refined pulp fibres is shown in the figure 2.3(b).
Two of the fibres can clearly be seen to have maintained their structure whereas the other
two fibres have collapsed and lie together.

In the processing of fibres their material properties and their geometric properties are
altered in order to make a better quality paper product. It follows then that measuring
and monitoring these properties can improve paper quality and this is exemplified in a
study done by Hagedorn [4].



2.2 Measurement methods of mechanical properties
of fibres

As customers, our demands on paper vary from the softness of tissue to the strength
and durability of cardboard, and from the porous nature of vacuum bags to non-porous
milk cartons. In addition are the demands made on the printing surfaces of most paper
products. To match these demands on the final paper products, there is a wide range
of pulp characteristics that require monitoring and measuring. The flexibility and the
elastic properties of the fibres are two of these characteristics but, as discussed in section
2.1, their influence on paper strength means they have an important role in paper quality.

The flexibility of fibres depends on the elasticity of the fibres and their geometry.
Fractioning fibres using a mesh separates long or stiff fibres from shorter or flexible fibres
since the long and/or stiff fibres do not pass as easily through the mesh as shorter and/or
more flexible fibres. Some assessment of fibre flexibility can therefore be made using
different sizes of mesh. However, the problem of separating the length property from the
flexibility property of the fibre remains.

The stiffness of individual fibres can be measured and through this Young’s modulus
established. The first of the two main methods used is carried out by setting the fibre
in a v-shaped notch on the tip of a thin capillary tube submersed in water. Water is
then allowed to flow through the capillary. This water flow is increased until the middle
part of the fibre reaches a preset mark [20]. The second method is to measure the extent
to which a fibre has followed the contour of a wire set between the fibre and a glass
plate, when a hydraulic pressure is applied. This process has been automated and is
available [20].

The L&W STFI Fibermaster [6] gives an indication of the stiffness through a mea-
surement quantity referred to as bendability. This is defined as the difference in form
factor when measured with high and normal flows in the measuring cell. The form factor
is the ratio of the greatest extension of the fibre to the real length of the fibre in the same
projected plane [21]. The use of flow and optical measurement results in the ability of the
system to provide a measurement related to the elasticity of the fibre. One of the prob-
lems with this method is that the fibre is projected onto a plane so that deflections out
of plane cause distortions and hence are a source of inaccuracy. Another issue is that the
current measurement is a relative measurement of the flexibility of the fibres and not an
absolute one. An industrial study measuring the bendability and paper quality showed a
correlation between these two properties, however this correlation was explained as being
due to the fact that the bendibility uses the shape factor, which is also correlated with
paper quality, and hence the two could not be separated [4].

In research investigation of fibre flexibility, individual fibres are tested [12,22]. One
method was to test individual fibres by applying epoxy glue to each end of carefully
selected long, straight fibres [12]. The fibre was then mounted in a loading machine
and the load was measured under cyclic displacement. From this and the geometric
measurements, the Young’s modulus, and the flexiblity was calculated. This was done
for approximately 400 fibres and provides figures for comparison with other methods.



10

Measurements of other elastic properties such as shear modulus and intrinsic loss have

not been found for pulp fibres.
It can be seen from this overview of the current measurement methods that a rapid

online method for measuring the elastic properties of the fibres directly does not yet
exist.



CHAPTER 3

Ultrasound in Suspensions

3.1 Overview of acoustic waves

Ultrasound is simply sound with higher frequencies than that the human ear can detect
(>20kHz), hence theories on audible sound also apply to ultrasound. The mechanism by
which a sound wave propagates through a medium depends on its material properties.
Hence by measuring the velocity of the wave and its attenuation information can be
obtained about these material properties. The term wave velocity will in this thesis and
refers to the phase velocity of the wave. As the wave propagates through a medium
it tends to diminish in amplitude. This is due the dissipation of energy as the wave
advances. This is quantified by the attenuation, «, and its relationship to the amplitude,
S,, at a point in space is

S = S,e (3.1)

where S’ is the wave amplitude after it has travelled a distance d in the medium. Hence

o= éln @) . (3.2)

Sound waves with different frequencies are absorbed, or attenuated, by different
amounts depending on the medium. Hence « is frequency dependent and the equation
above is valid for a particular frequency.

If the sound is a pulse then it will contain different frequencies and the shorter the
pulse, the more frequencies it will contain. The advantage of measuring using a pulse
is that the frequency response of the medium can be obtained in a single measurement.
However, the transient effects are more complex to model and hence it is common to
model the system as a steady state one.

3.1.1 Waves in fluids

In fluids, the classical explanation for attenuation is that it is due to viscosity, 1, and
thermal conduction. For non-metallic fluids, the attenuation due to thermal conduction

11



12 ULTRASOUND IN SUSPENSIONS

is negligible compared to that due to viscosity [23]. Unfortunately for most common
liquids this does not account for all the attenuation mechanisms. In water, this excess
attenuation is attributed to structural relaxation [24] and an additional viscous term, 7
is used. For water, np is approximately three times that of the 1. The relationship for
the attenuation, a, can be written in terms of the relaxation time 7 [23] such that

1w?
N o—— 3.3
“ 2¢ " (3:3)
where w is the angular frequency and 7 is
4 2
7= (n+ns)/pic’. (3.4)

3

From this it can be seen that as the frequency increases, the attenuation becomes
increasingly significant, even in low viscous fluids such as water, as it is a function of w?.
In a non-viscous fluid the wave velocity, c., equals the thermodynamic speed of sound,
c. This is defined as [23]
B
c=4/—, (3.5)
P
where B is the adiabatic bulk modulus and p; is the density of the fluid [23]. ¢ is a
constant in the wave equation which is derived from the linearised mass conservation
and linearised conservation of momentum [25] such that

) L0
c® ot?

If the fluid is unbound and viscous, then the effect of the viscosity can be approximated
by the introduction of 7 into the wave equation such that

=0 (3.6)

3
. ~c(l+ ng %), (3.7)
Although c. has a term depending on w?, 72 is very small for low viscosity fluids like
water and hence the dispersion, which is where waves of different frequencies travel at
different velocities, is small.

3.1.2 Waves in Solids

The wave motion in solids is more complex and it is described by Navier’s displacement
equation, which is expressed for a isotropic, elastic medium as
2 *¢
A+ 2G)VV - ¢+ GV¢ = pgﬁ (3.8)
where ( is the displacement vector and p is the density. A and G are elastic moduli where
A is Lamé constant and G is the shear modulus. V?2 is the three dimensional Laplace
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Figure 3.1: Illustrations of a shear wave (3.1.2) and a pure compression wave 3.1.2 propagating
i a solid

(b)

operator [26]. This can be re-written to divide the motion into a dilation (compression)
and rotation. 52
A+2G)V(V-¢) + GV x (VXC):pga—tg (3.9)
Thus in an unbound solid two types of waves can exist: a compressional wave and a
shear wave (rotational) wave. The shear wave is a transverse wave, where the particle
motion is perpendicular to the direction of propagation (Figure 3.1.2) and hence is termed
a rotational wave.
The velocity of a shear wave depends only on the shear modulus of the solid such

that

(3.10)

G
Cs=[—.
P2
In a compression wave, the particle motion and the wave direction are concurrent. The
simplest case of a compression wave propagation in a solid is when it is along the axis
of a narrow bar or rod of isotropic material, where surface of the rod is allowed to move
freely and the frequency is low (theoretically when the frequency is zero). The velocity
of this wave will solely depend on the Young’s modulus such that [27]

(3.11)

E
Co=4]—-
P2
However, if the isotropic media is now extended, it can be thought of as if the surface
were fixed. It therefore requires a greater stress to cause the same strain. It can be shown
that wave velocity of a compression wave is then dependent on the shear modulus, G as
well as the bulk elasticity of the material, K [28]. Its velocity becomes

K+ 4G
P (3.12)
P2

For a volume of the material where the force, p, is applied uniformly on each side of an
cubic element of the medium, K is defined as p = K/ps [28]. A full derivation of these
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wave velocities and how they relate to the stress and strain in a solid medium is given
in [28].

In solids, the intrinsic attenuation per wavelength can be approximated by the phase
difference between the stress and the strain, also referred to as the loss tangent, tan d [29].
Stress and strain are related by a general elastic modulus, M. The specific modulus or
combination of moduli will depend on the geometry, the type of loading, the specific
material etc. To model this phase difference, M is made complex such that

M =M +iM"
and
"
tand = e (3.13)
In terms of the attenuation, «, this becomes, if tand < 1
a = 7tand (3.14)

This phase difference will cause dispersion and the effect can be calculated by using
the complex elastic modulus in the calculation of the wave velocity. Hence c. can be
expressed as a complex wave speed, ¢, = ¢.v/1 —itand

In a suspension, the wave travels from a fluid to either a solid or another fluid. As
the wave hits the boundary of the two media, part of the wave is reflected and part of
the wave is transmitted. In the simple case of a plane wave arriving at a boundary that
is perpendicular to the direction of the wave, calculating the ratio of the intensity of the
transmitted wave to the reflected wave is straightforward. This is done by considering the
boundary condition at the interface and assuming the velocity and pressure to be contin-
uous at this point. The result is that the amplitude of the wave being reflected depends
on the difference in the characteristic impedances of the two media. The characteristic
impedance is the product of the density and the velocity of the wave. Since a plane wave
and a flat boundary are considered, the only waves propagating are compression waves.
The calculation is more elaborate if the wave progression is not perpendicular to the
boundary and particularly if the interface is on a solid [30].

3.1.3 Thermoelastic Scattering

Associated with an ultrasonic pressure wave is a temperature field which is in phase
with the pressure wave and depends on the thermal properties of the medium. In a
suspension, there are two media that normally have different thermal properties. The
result is that the temperature field inside the suspended particle is different in amplitude
to that of the surrounding liquid away from the boundary. In order to maintain the
equilibrium at the boundary, the temperature field in the boundary layer varies and
causes the boundary layer to expand and contract and hence become the source of a
secondary wave (Figure 3.2). This is known as thermoelastic scattering. Considering the
0 —r plane, of a cylindrical scatterer in a fluid media, this thermal elastic scatter appears
as a symmetric monopole wave emanating from the scatterer. This wave decays quickly
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Figure 8.2: Diagram of an pulsating boundary layer, the source of a secondary sound wave.

and is not noticeable at a large distance from the scatterer. It does however dissipate
energy and in some cases, such as for an emulsion of sunflower oil and water, it can be the
dominant effect in attenuation [31]. For fibres where the scatterer has a larger diameter
and for higher frequency this effect is small [32].

3.1.4 Viscous boundary effects

In the previous section the attenuation and motion of an unbound fluid was discussed.
The added effect of a boundary is apparent when a viscous fluid flows close to and
parallel to the surface of a wall. In this case there exists a primary wave with motion
at a distance from the wall, with only a component in the z direction parallel to the
wall, u,. There also exists a secondary wave, u’, with motion in x that is a function of
z (direction perpendicular to boundary) and time ¢. In studying the absorption arising
from the shear at the boundary, the equation governing the flow is the rotation part of
the Navier Stokes equation,

Ju
P ot
The boundary conditions are that the velocity approaches the free stream velocity far
from the boundary and the wall is fixed which means that the velocity is zero at this
point such that u = (u, + «’). Hence equation 3.15 for the x direction is
o' nd*u
ot po2’
This is a diffusion equation, rather than a wave equation and hence no wave propagation

is possible [33]. The solution for equation 3.15 that satisfies the boundary condition are
that the complex secondary wave v’ is [23]

U = —uge” 19/ (3.17)

0 =+/2n/mw (3.18)

The quantity d is the viscous penetration depth or viscous skin depth. The final expres-
sion for the secondary wave if u, = U,e!@!ke®) ig

u = erfz/éei(wtfkcwfz/é) (319)

=9V x (V xu). (3.15)

(3.16)
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where k. is the wave number of the primary wave in the fluid.

As can be clearly seen from this equation, this wave attenuates exponentially and
its effect is confined to the distance given by the viscous skin. This description is for a
moving fluid but it is also valid for a when the fluid is motionless and the solid surface
is moving.

At a large distance from the scatterer this wave is not noticeable, but as with the
thermoelastic wave, it does dissipate energy at the boundary. The above expression is
valid if the wavelength is much greater than the skin depth, which for water is above the
GHz region.

3.1.5 Summary

The attenuation of the sound or ultrasound wave reflects the nature of the medium the
wave has passed through. Considering a sound wave travelling through a suspension of
solid particles in a fluid, the attenuation of the sound wave will depend on the viscosity
and the bulk viscosity of the fluid, the difference in the characteristic impedance between
the fluid and the solid i.e. differences in density and wave velocity in these two media,
and the attenuation in the solid itself. This illustrates the possibility of being able to
estimate a number of fluid and solid properties by measuring the attenuation of sound
in a suspension of solid particles in a fluid. The additional attenuation of thermoelastic
scattering could potentially provide the thermal properties of the media. The viscous
boundary effects reinforce the effects of the viscosity and hence could potentially lead to
a means of establishing the viscosity of the fluid [34].

3.2 Attenuation Models of two phase suspensions

3.2.1 Historical background

The propagation of sound in suspensions has been discussed for over hundred years.
Rayleigh [35] calculated the attenuation of sound due to small spherical obstacles in a
non-viscous atmosphere, when considering the effect of fog on sound. He showed that
the attenuation depends on the number of scattering particles and the ratio of their
diameter to the wavelength of the sound. Knudsen [36] used expressions by Sewell [37] in
the calculation of attenuation for spherical and cylindrical particles in a viscous fluid to
model audible sound in fog and smoke. Incidentally, Sewell’s work confirmed the futility
of using suspended or stretched wires for absorbing sound in rooms. In 1953, Epstein
and Carhart [38] developed a model for the attenuation of sound by spherical particles
where energy loss is due to the thermal and viscous losses in the boundary layer as well
as scattering from the particle itself.

This model was modified slightly by Allegra and Hawley [39] and the resulting
Epstein-Carhart [38]/Allegra-Hawley [39] (ECAH) model has been the basis for investiga-
tions on attenuation and velocity measurements in emulsions [31]. A summary of different
experiments on suspensions based on acoustic scattering theories is given in [40], though
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which specific model has been used in each case is not mentioned. In 1982, Habeger [32]
derived a version of the ECAH model for cylindrical scatterers and tested this with exper-
iments on suspensions of viscoelastic polymer fibres in water. The fibre properties that
were known or could be measured, using alternative methods, were used in the model
with no adjustments. The values of the loss tangent and Poisson’s ratio were set to fit
the experimental data.

As the concentration of the scatterers increases, models based on a linear relationship
between the attenuation of a single particle and the number particles start to become
less appropriate [41]. Multiple scattering models [42] have been developed for spherical
particles but these cannot be directly applied to other shapes.

Another type of model that has been applied to paper pulp is Biot’s model by Adams
[43]. The Biots model treats the suspension as a solid permeated by tubes through which
the fluid phase passses. This type of model is suitable for high concentrations where the
fibres can be allow to interact with each other to form a structure. The results showed
some promising results but required four parameter to be estimated, two of which are
the compression and the shear wave velocities of the fibre material and the other two are
structural parameters of the suspension. Habeger [32] claims that more difficulties lie
in trying to assess the structural and material properties required in this model than in
establishing the material properties in a scattering model.

Habeger [32] used the results of work on synthetic fibres to explain qualitatively the
effect of the refining process on paper pulp using the results of ultrasound attenuation
measurement and suggested more work was warranted [44].

The three research questions in the introduction were:

1. Can the measurement of ultrasound be used to estimate the elastic properties from
ultrasound attenuation?

2. Can the method be applied to wood fibres in pulp? and
3. Can the method be used online?

Basing the model of attenuation on Habeger’s work provided a good basis for answer-
ing the first question because his work showed that the model captures the behaviour
of fibres in suspension. In addition, his results showed that it was possible, to obtain
estimates for one of the material properties when the others are defined [32]. However,
his model is complex as it involves thermoelastic scattering, viscous boundary effect as
well as the general wave propagation behaviour in the suspension. Hence to make the
model more amenable to use in solving the inverse problem, where material properties are
estimated from measurement of attenuation, an analytical solution for the attenuation
was sought.

At first glance, it would seem that Habeger’s work in part answers the second question
in that he used the results of polymer fibres to interpret attenuation measurements of pulp
[44]. However, the dependance of the attenuation on the geometric properties of the fibres,
makes interpretation of these measurements without accurate size information, highly
speculative. With the onset of optical measurements systems, accurate size information
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on the wood fibres in pulp is available and hence basing a system on this model is more
feasible.

One of the implications of the third question is that a simple model is sought. Al-
though Habeger’s model may be a good basis for the system, it is complex and hence
simpler version of it that captures the necessary behaviour of the fibres was sought.

3.2.2 Assumptions and Modification of the attenuation model

A number of assumption are used in the attenuation models in work covered by this thesis
(JED! models) and in the model derived by Habeger [32]. There is also a difference in the
derivation between that of Habeger and that used in the JED models. In this section a
summary of the different assumptions used in each model is presented. The difference in
the derivations is also summarised. The summary includes reference to the appropriate
equations in the full derivation of the JED model is given in the next section (section
3.2.3)
All the JED models assume:

e The scatterer is an infinitely long cylinder
e Thermal properties can be neglected.

e The suspension is dilute hence multiple scattering do not occur and there is inter-
action between fibres.

e The effect of viscosity on the stress at a large distance from the scatterer can be
approximated by the addition of the attenuation of the fluid to the attenuation due
to fibre interaction. This is shown in equations 3.41-3.45 and equations 3.52 and
3.53

In all the JED models there is a scaling factor that differs from that of Habeger’s
model but is similar to that used in the ECAH model. This is explained in more detail
in and after equation 3.45.

JED v1

The initial version of the JED model is derived in detail in Paper A. The evanescent
waves in the fluid are neglected (equation 3.27). This modifies the stress in the fluid
(equation 3.28). The boundary conditions are modified.

JED non-viscous

This is derived in Paper E. Viscosity, 7; is assumed to be negligible. Hence, as above
the evanescent waves in the fluid are neglected (equation 3.27) and the stress in the fluid
modified (equation 3.28) by setting 7; = 0. The boundary conditions are modified.

'a Just Estimate of Damping
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JED non-viscous distributed radii

As above but the attenuation allows for non-uniform radii.

JED viscous

This is also derived in Paper E. The evanescent waves in the fluid are included (equa-
tion 3.27) and all the terms in the stress (equation 3.28) are included. The boundary
conditions are modified.

JED hollow distributed radii

This is derived in Paper F. The cylinder is hollow and the centre is assumed to be fluid
filled. Viscosity, 7; is assumed to be negligible. Hence, as above the evanescent waves
in the fluid are neglected (equation 3.27) and the stress in the fluid modified (equation
3.28) by setting 7, = 0. The boundary conditions are modified. The attenuation allows
for non-uniform radii as in the JED non-viscous distributed radii.

3.2.3 General description of the JED model

A similar model is used in all the works covered by this thesis, hence a description is given
here. It is presented in detail so as to allow the differences to be clearly seen between
these JED models and the model developed by Habeger [32].

In the JED model, the energy loss of an ultrasound wave after it has interacted with
an infinitely long, cylindrical scatterer is calculated. The basic geometry is show in
Figure 3.3. The material of the scatterer is assumed to be viscoelastic and isotropic. For
a solid, it can be seen from equation 3.9, that the displacement can be separated into
a compressional part and a rotational part. These are expressed for the solid scatterer,
where the time dependence is taken as e=™*, so that /9t is replaced with —iw, such that

V2 = sz = zw(V¢>2 +V x A2) (320)

where ¢o and A, are scalar and vector displacement potentials. In this, Ag is purely
rotational can be expressed as

V-Ay = 0. (3.21)

The wave numbers are related to these scalar or wave displacement potentials through
the wave equations such that

V2, — ki (3.22)
VxVxAy = kiAs,. (3.23)

The subscript 2 is used to indicate the terms related to the solid. Terms relating to the
fluid have the subscript 1.
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incident
plane wave

Solid cylinder

Figure 8.3: Diagram of an ultrasound plane wave being scattered off a cylindrical scatterer.
For the suspending fluid, similar expressions are used except the displacement poten-
tials are replaced with velocity potentials. So,
Vi =—-V¢ —V x Ay, (3.24)
where
V-A; = 0. (3.25)

The wave numbers are related to these scalar or vector velocity potentials through the
wave equations such that

Vi = —K.¢ (3.26)
VxVxA; = kiA;. (3.27)

In the above equations ko. = w/(co(1 — itandy/2)) and kos = \/iwpa/ s.
The stress tensor can be expressed in terms of the wave potentials:

Tij = Th [(k%s - Qk%c)fbl] 05 + 2m1éy5 (3.28)
Toij = [(W2P2 - 2#2’“39%] 0ij + 24065 (3.29)
Where the strain is

1
€ = 5(Vij+Vii— 2TV (3.30)
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The fluid wave potential is divided into an incident part and a reflected part, ¢; =
¢10 + ¢1-. The incident plane wave potential, ¢1,, is expressed in cylindrical coordinates
and it behaves according to the wave equations and hence is set to equal gi(keer+hicsz—wt)
[32]. Since the plane of the cylinder lies at an angle v to the incident wave, the wave
numbers are expressed in terms of their components along the cylindrical coordinate axes.

kice = kiccos() (3.31)
klcs = klc SiIl(w). (332)

¢1, can then be expressed in terms of Bessels functions [45], such that

b0 = (J[)(kmr) +2) 0 cos(newn(km) eilltess=en), (3.33)

n=1

where J,, is a Bessel function of the first kind of order n.

Since the reflected wave potentials in the fluid are not bounded at the origin in that
they do not span r = 0, they are expanded in terms of Bessel functions of the third kind,
subsequently referred to as Hankel functions, H,(Ll)7 hence

b1, = (BO1 Hél) (K1eer) + 2 Z i" cos(nb) B, Hﬂ(klccr)) eilkiesz=w) = (3 34)

n=1

where B, are the coeflicients of expansion of the reflected wave potential, ¢1,. Note that
any expansion coefficients which involves a wave number that is dependent 1, will also
be dependent 1. Hence in the case B,, is dependent on ).

The combination of equations 3.33 and 3.34 gives an expression for ¢y, expanded in
terms of Bessel and Hankel functions. To meet the boundary conditions for all values
of z and ¢, the time and z dependence of the potentials must be the same as ¢,. The
equivalent expression for the compressional wave potential in the solid is then

by = (Boz Jo(kseer) +2) i cos(nf) By, Jn(kQM-)) eilkresz—wt) (3.35)
n=1
where, ko = \/k2. — k3., and B,, are the coefficients of expansion of ¢,. Note that all

waves along the boundary surface in the z direction are equal (see Chapter 5). Hence,
koesin ) = ks

To meet the boundary conditions in cylindrical coordinates, the transverse potential
can be expanded in terms of two independent scalar potentials [46] such that, M =
V x Xf{, N=VxVx §IA< and A = M + N. Where x and £ are solutions to the scalar
Helmholtz equation so, VZy = —k3,x and V¢ = —kZ.€ [32].

This means that the transverse waves in solid can be expanded in terms of Bessel
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functions such that

=, dcos(nd ,
k36 = <D02J0(k-2$cr)—Q—QZW%DMJH(k%J)) ¢!Fresz=et) (3.36)

n=1

iklchZ = <E02 JO(kQSCT) +2 Z i" COS(ﬂQ)Enz Jn(kZSCT)> ei(klcsz—wt) (337)

n=1

where, kos. = \/k3, — k2., and D,, and E,, are the coefficients of expansion, & and .
For a viscous fluid, evanescent waves in the boundary layer exists and these are

expanded in terms of Hankel functions,

= 0 6 ;
K6 = ( Do H (o) + 230280 g,y | eitber=en (3.38)
— 00
and
ikiesx1 = (EOIHél)(k‘lscr) +2 Z " Cos(nﬁ)Eer(Ll)(k:lscr)> eilkresz—wt) (3.39)
n=1

where k5. = kiscos(v) and D, and Eny are the coefficients of expansion of the evanes-
cent wave potentials &,, and x,,, repectively. Again, all waves on the surface in the z
direction are equal hence ko, sin ) = k.

The boundary conditions are that the velocities and the stresses in all directions are
continuous at the solid-fluid interface. So at » = R, where R is the radius of the cylinder,
‘/17‘ = ‘/27“, ‘/19 = ‘/29, ‘/12 = ‘/227 Tirr = Tirry Tire = T2r0 and Tirz = T2rz-

The angular dependencies of the functions are orthogonal so the coefficients can be
determined by applying the boundary condition to each order of expansion separately.
The stresses and velocities (equation 3.28 and 3.29) are then expressed for a single n't
order of the series and the appropriate boundary condition used. This results is a series
of equations that can be solved for the unknown expansion coefficients. Since only By, is
necessary for the calculation of the attenuation, the system of equations can be expressed
as a matrix and Cramer’s rule [47] used to solve for By,. This was done in Papers E and
F.

The second part relates the coefficients of expansion to the energy loss of the incident
wave as it interacts with a number of cylindrical scatterers. The average loss per unit
time due to the viscous and thermal processes can be approximated by the product of
the velocity and the stress integrated over the surface, S with its centre at the centre of
the scatterer such that

1 *

where U is the energy loss per unit time, V" is the conjugate of the velocity in the j axis,
7;; is the stress tensor and R indicates that only the real part is taken [38].
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At a large distance from a cylindrical scatterer, the energy loss per unit time per unit
length, L, can be expressed as

T—00

lim L = %R( / v:n,.d9>., (3.41)

since the evanescent waves do not contribute. This can be simplified further by assuming
that the effects of viscosity of the water on the compression wave are negligible and hence

rlingo Try = (iwpl - 277"/%@) ((blo + d)lr) - 27](¢10,T7‘ + ¢17',rr) (342)
becomes
lim Trpr = iu)pl(¢10 + (]51,«), (343)
r—00
where 7, is the stress in the radial direction is calculated using equation 3.42. Similarly

‘/7' ~= _¢10J' - ¢17'7'r~ (344)

Using 3.43 and 3.44 in 3.41 and using the expanded series for the potentials gives
L=-wp1 > e ([Jnlkicer) + BinH)(keer)] X [T} (keer)” + By, HY (keer)™]) . (3.45)
n=0

where €, = 1 for n =0, ¢, = 2 for n > 0. In the above equation €, is not squared, which
is similar to the approach used in Epstein and Carhart in their appendix [38]. This differs
from Habeger’s equation 37 where € is squared. The reason for not squaring this term is
unclear in Epstein and Carhart derivation. However, using €? results in a poor match to
experimental results. Note that in Paper A this difference was mistakingly attributed to
a factor of two missing when asymptotic values are inserted in the Bessel functions.

Continuing with the derivation from equation 3.45, asymptotic values are inserted in
the Bessel functions giving

L=-wp1 Y &R (Bi,+ Bi,B},), (3.46)
n=0

This shows that the losses are simply a function of the amplitude of the reflected wave.
To equation 3.46 the losses due to the scattering, Ls are added. Ls at a large distance
from the scatterer is such that

Ly=wp Y R(eBinB;,) . (3.47)

n=0

The total energy loss L, is therefore

Li=-wp Y R(exBin). (3.48)

n=0



24

The average energy carried per unit time across a normal unit area by the compression
wave is

1
E = aklcwpl, (349)

where k. is the wave number of the compression wave in the fluid [38]. Remembering
that B, is dependent on 1, the attenuation due to a single scatterer for an angle v is

L -2
ay =5 = . D R (Binen) .- (3.50)

n=0
This is multiplied by the number of particles per unit length, N where

1
TR2

(3.51)

and where f, is the volume fraction. The cylindrical scatterers lie at different orientations
to the oncoming wave, hence the average cosine of attenuation over the range of angles
fromy =0toy =3 is

—2f, Bl
a= 7TR2£16§R (/0 € Bin COS(’QZ))d’L/)) . (3.52)

To compensate, in some degree, for the assumption that viscosity effects are neglected
(equation 3.46) the attenuation of the fluid is added in the calculated in equation (3.52).
The expression for « is therefore,

—2/ R (/2 €nBin cos(z/;)dzb) + ay, (3.53)

o =
ﬂ'Rlec 0

where ay is the attenuation due to the fluid.
A similar approach is taken by Hipp et al. [41] for low attenuating systems. In their
approach they include a background attenuation term which is defined as

apg = fro/ + (1= f)o" (3.54)

where ¢ intrinsic attenuation of the dispersed phase or scatterers and «o” is the intrinsic
attenuation of the dispersant, or surrounding fluid. In their derivation, this term is added
to the attenuation due to the interaction with the particles. For very dilute suspensions,
fr < 1 hence apy = o and hence adding this background term become the equivalent
to equation 3.53.

In addition to being able to calculate the attenuation, the coefficients of expansions
can also be used to calculated for the wave potentials in the area surrounding a single
fibre. Figure 3.4 shows the effect of the fibre on the reflected wave potential field where
the angle of incidence is 45°.
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Figure 3.4: Amplitude of the reflected wave potential surrounding a fibre scattering a plane,
ultrasonic wave of 10 MHz where 1 = 45°. The fibre was nylon with c; = 2530 ms™1, v = 0.431,
tan §=0.2 and R = 26 um
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CHAPTER 4

Comparison to Spherical Scatters

The JED models are the cylindrical equivalence of the model of attenuation for spherical
particles derived by Epstein and Carhart/ Allegra Hawley [38,39]. It is therefore of
interest to compare these models to show the similarities and the points at which they
deviate. This is of particular interest when considering the possible applications of this
model to modelling attenuation in pulp since pulp is made up of both fibres and fines. It
is therefore possible that the fine proportion of the suspension could be modelled using
the ECAH model if necessary.

The derivations of both models are very similar with the exception that, in the spher-
ical case, the boundary conditions are expressed in terms of spherical coordinates and
hence the wave potentials are expanded in terms of modified Bessel functions. In addi-
tion, in spherical coordinates, there is only one transverse wave as opposed to two for
the cylindrical case [32,46].

The derivation for the spherical model, as described by Epstein and Carhart [38], is
taken up from the expression for the energy loss per unit time due to a single particle,
W, where

o0

> 20— DHR(A, + |Au]) (4.1)

n=0

_ 2mwpN

W =

c
and N is the number of particles, k. is the wave number of the compression wave in
the fluid, A, are the coefficients associated with the reflected wave potential and n is an

integer. w is the angular frequency and p is the density of the fluid.

The energy of the incident wave carried per unit time across a normal unit area is
defined as, [38],

1
Hence
47N &
s ===z (20 + DR(A, + A, (4.3)
¢ n=0

27
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For a unit volume, the number of spheres, N, is

— frpr (14)
where f,. is the volume fraction. Hence
3 o0

ng 5> (2n+ DR(A, + [An]?). (4.5)
n=0

Epstein and Carhart only considered the first two terms and neglected the |A,|? term
since it was the square of a small number. Hence their final expression was

—fr==R(Ap + 34,). (4.6)

R&kZ

In Allegra Hawley [39] the attenuation is given as:

o]

f,st = ZO(2n +1)R(4,). (4.7)

In their equation there is an additional factor of two in the denominator when compared
to that of Epstein and Carhart (equation 4.5). The reason for this is not clear from the
Allegra Hawley’s article.

In a review of ultrasound techniques for characterizing colloidal dispersions [48], an
expression for the complex wave number, 3, in a scattering medium is given for dilute
suspensions. This is based on the far field scattered or reflected wave potential, ¢1(6,r)

for a single particle,
eikl,ﬂ’

¢(0.1) = ¢of(0)——, (4.8)

r

where ¢, is the incident wave potential and k;. is the wave number of the fluid. f(6)
gives the scattering amplitude as a function of the angle with respect to the propagation
axis 1. f(6) is defined as

£(0) = % i(Qn 4+ 1) 4, P, cos . (4.9)

n=0

The complex wave number can then be expressed as

(5)2 =1+ 47N f(0). (4.10)

c

INote that for a spherical scatterer the incidence angle 1, used for cylindrical particles, would have
no relevance
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where f(0) is the forward scattering scattering amplitude. This is from a derivation for
spherical particles by Foldy [49]. At low concentration, the assumption kﬁ ~ 1 can be
made. Thus,

ArN
B =k, ka nz; (2n + 1)S(4,) —i gl 0(2n+1)§R(An). (4.11)

The attenuation of the medium is the imaginary part of the above equation. Hence

47TN >

a = -4 > (@2n+ DR(A). (4.12)
¢ n=0
Substituting for IV,
3fr
O =~ > (2n+ DR(A4,), (4.13)
¢ n=0

which is the same expression as equation 4.7 derived by Allegra and Hawley [39] and
supports the addition of the factor of two.

The JED model gives expression for the attenuation of cylindrical particles in sus-
pension such that,

2fr
Q. = ﬂR2£16§R (/0 enBin cos(d))dw) (4.14)

where the expansion of coefficient of the reflected wave potential is By,.

As can be seen by comparing the spherical and cylindrical attenuations, the expres-
sions are similar. However, without considering the differences in the expansion coef-
ficients one sees that «; is inversely proportional to R* and k? compared to . which
is inversely proportional to R? and k.. The R terms are simply a result of the volume
concentration calculation and the effect of the assumption of infinitely long particles. It
means that for a given f,. and R, there will be fewer spherical particles than cylindrical
particles attenuating the ultrasound signal. The k. terms show that as the frequency
increases (k. = 27 f/c1.), this term will tend to lower a more than ..

Another difference is the influence of higher terms of the series expansion on the at-
tenuation. In the spherical attenuation calculation, the terms in the series are multiplied
by (2n + 1), hence greater weight is given to higher terms in the series that to the lower
terms in the series. In the cylindrical case the only difference is between the first term
in the series and the other terms of the series is a factor of two. However, in both the
cylindrical and the spherical attenuation these higher terms quickly become small. Hence
this should not make a significant impact on the attenuation.

A comparison of the model attenuation from a suspension of nylon particles in water,
normalised with respect to concentration, between sphercial and cylindrical particles is
shown in the figure 4.1. In this case, the cylindrical particles have been aligned so that
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Figure 4.1: Plot of the modelled attenuation of spherical and cylindrical nylon particles in water.
The angle of incidence and the loss tangent were set to zero. Neither the viscous properties of
the water nor the thermal properties of either the particle material or the water are considered.
The parameter values were R = 22 uym, co = 1340ms™1, po = 1131 kgm™3, tan 6 = 0, v = 0.3,
c1 = 1490ms™! and p1 = 996 kgm 3.

the angle of incidence is zero. To allow a clearer comparison of the resonances between
the two types of particles, the intrinsic loss in the particle material in both cases was
removed.

The figure shows that there exists a similar resonance pattern between the cylindrical
and spherical attenuation resonance maxima though they are not exactly aligned exists.
The difference is thought to be due to solution to Bessel functions and to those of the
modified Bessel functions. Physically, it relates to the differences in the geometry. These
results, together with the results from Chapter 5 which show that the mode in a nylon
cylinder at these frequencies can be approximated to modes excited when the angle of
incidence is zero, suggests that the resonances are from the same cause in both the cylin-
drical case and the spherical case. A review article [50] discusses the different types of
waves in spherical and cylindrical particles in general and describes the different waves
that exist, for example quasi-Rayleigh waves (or rather leaky waves in this case since
the scatterer is immersed in water), Franz waves for when the scatterer acts as an im-
penetrable object and Stonely waves, for when it behaves as an elastic object as well as
whispering gallery waves. However, the latter were shown to exist where the wavelength
is much smaller than the radius [51], which is not the case here. It should be possible
using the descriptions of these waves to show that the resonance features shown in this
example are from the same type of wave. However, this is not studied further in this
thesis.

The addition of intrinsic loss in the particle material by increasing tan 0, has a
damping effect on the resonance in both cases, as is shown in figure 4.2.



31

0.8

alised Attenuation(Np/m)

Norm
o
[=2)

8 10 12 14
Frequency (MHz)

Figure 4.2: Plot of the modelled attenuation of spherical and cylindrical nylon particles in water.
Here the intrinsic loss of the particle material has been included. The only parameter that differs

from Fig. 4.1 is tan 6 = 0.2.
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Figure 4.3: Plot of the modelled attenuation of spherical and cylindrical nylon particles in water.
The attenuation is the average of the attenuation with incident angles ranging from 0 to 5. The
parameter values are the same as those in Fig. 4.2.

The orientation of the cylindrical particle affects the attenuation hence a comparison
between randomly orientated particles and the spherical model is done and shown in
figure 4.3. The effect of this is further damping of the resonances maxima of the cylin-
drical particles and a shift in frequencies. The reason for the damping and the shift in
frequencies is described in more detail in chapter 5.

In conclusion, the comparison between the spherical and the cylindrical models shows
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that the relationship to the frequency differs as well as the relationship to the volume
concentration. The resonance frequencies between a cylindrical scatterer and a spherical
scatterer have a similar shape, though to a lesser extent when the incident angle is varied.
This suggests that the dominant resonance modes are the same type in both cases, for
this material in this frequency-radius region. Finally, the comparison also shows that an
increase in the intrinsic loss of the material has a damping effect on these resonances in
both cases.



CHAPTER 5

Modes of Vibration

When an object is struck, it will vibrate. These vibrations are a superposition of numer-
ous waves of certain velocities and frequencies propagating in specific directions. The
modes of these vibrations are generally a function of the material properties and the
geometry of the object. If the object is surrounded by another medium, e.g. the object is
immersed in water, the frequencies and wave velocities of these modes are altered. The
energy of the vibrations will be attenuated due to a number of processes e.g. internal
friction in the solid which is quantified by the loss tangent (Chapter 3).

When an object is forced to vibrate at a certain frequency, the energy absorbed by
the object depends on the frequencies of these modes of vibration. This is why the modes
of vibration of particles in a suspension are important when studying the attenuation of
ultrasound waves in suspensions of such particles.

Figure 5.1 is the attenuation calculated over a range of frequencies by the JED non-
viscous model (Chapter 3) and shows a feature appearing to be resonance maximum. The
assumption is that particular frequencies of the incident wave will match the frequencies
of certain modes of vibration and this will affect the energy absorbed by the cylinder and
hence the attenuation. By studying the modes of vibration of infinitely long cylinders
surrounded by a fluid, the reason for the extrema in the attenuation spectra (hereto
referred as attenuation) can be investigated. A greater understanding of these extrema
could lead to a better understanding of the relationship between them and the material
properties of the cylinders.

Modes of vibration even in simple geometries quickly become quite complex. An
example of the simplest modes of vibration mentioned earlier in chapter 3, was the
longitudinal wave propagating along the z axis of a narrow, unconstrained rod. An
diagram of the geometry is given is Figure 5.2. This is the first mode of vibration of a
longitudinal wave, L[0,1] (labelled 1 in figure 5.3). At low frequencies (shown in figure 5.3
as low values of a/A) this wave has a velocity, ¢,, which equals \/E/ps, where E is the
Young’s modulus and ps is the density. As the frequency increases, the longitudinal wave
starts to exhibit the behaviour of a surface wave and the wave velocity will asymptotically
approach the velocity of a surface wave (cs in figure 5.3). As discussed by Kolsky [28],

33
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Figure 5.1: Attenuation calculated from the JED non-viscous model for a suspension of nylon
fibres in water. The cylinder radius was 26 pm and the material properties used are given in
Table 5.1.

Solid cylinder

Figure 5.2: Diagram of the geometry of a rod.
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Figure 5.3: The normalised phase velocity c/c, of longitudinal waves as a function of normalised
frequency, a/A, in cylindrical steel bars of radius a and Poisson ratio, in the diagram given the
term o, where o = 0.20. ¢o = /E/p as explained in the text, ¢y and cg in the diagram refer to
the compressional and the shear wave velocity in steel, repectively. co is the wave velocity of
the surface or Rayleigh waves [52].

Pochhammer derived the frequency equation for infinitely long cylinders where the wave
propagation is along the axis of the cylinder, z. These can be used to give expressions for
longitudinal or extensional waves, torsional waves and flexural waves [28]. These waves
have different modes of vibration, one of them being the L[0,1] discussed above. The
velocities of the other modes of vibration of the longitudinal wave are shown in Figure
5.3 labelled 2 and 3.

¢, discussed above, is the velocity of a surface wave or Rayleigh wave and is a wave
which travels along the free surface of a half space. The particle motion is in the plane
of the surface and from being large at the surface, falls off rapidly as the depth into the
medium increases. Their use in the determination of elastic properties in the thin surface
layer of different materials discussed by Every [53].

The figure shows that above the normalised frequency of 0.2, according to Kolsky
a second cylindrical mode appears on at the surface, L[0,2] labelled 2 in figure 5.3.
Longitudinal waves are symmetrical in # and hence are of the zeroth circumferential
mode. Other waves such as flexural waves, have higher orders. These higher order
circumferential modes give rise to dipolar n = 1 and quadrupole n = 2 radiation patterns
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(a)

Figure 5.4: Diagram of the wave caused by an oblique angle between the incident plane wave
and the z-axis of the cylinder.

in the medium surrounding the cylinders.

The aim in examining modes of vibration is to identify which mode of vibrations
can be identified from the attenuation and with that information go on to relate the
modes to the elastic constants involved. The solutions for the natural frequencies are
complicated when shear waves are considered. This is the case when the incident wave
propagates in the z-direction and when modes greater than n > 0 are considered. The
complexity is increased when the cylinder is surrounded by a fluid as the effect of the
fluid on the cylinder surface alters the oundary conditions. These effects are inertial and,
if the fluid is viscous, the viscous boundary effects discussed in Chapter 3 also have to
be considered. This means that the system is complex and analytical expressions for the
modes of vibration are difficult to establish. A modern approach to calculating mode of
vibrations of fluid load cylinders is through finding numerical solutions of the equations
that govern the motion and satisfy the boundary conditions [54].

5.1 Effect of oblique incidence

Before studying the modes further it is of interest to investigate the effects of an oblique
angle of incidence between the wave initiating the vibrations in the cylinder and the z-
axis of the cylinder. A diagram of a cylinder surrounded by a fluid with an incident wave
approaching the cylinder at an oblique angle, 1, is shown in figure 5.4(a). This causes
compression at points along the cylinder surface with the distance between the points
equalling the projected incident wavelength, A;.sin, where \;. is the wavelength of the
compression wave in the fluid. In effect, there now exists a wave in the solid propagating
in z with a wave number, ko (figure 5.4(b)), such that ko.s = k1. sine), where ky, is the
wave number of the compression wave in the fluid.
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Table 5.1: Material Properties

Material Property Value
Nylon: density, pa (kgm=3) 1140
Nylon: Compression velocity,c, (ms™!) 2531
Nylon: Poisson’s ratio,v, 0.433
Water: density p; (kgm™3) 1000

Water: Compression velocity,c; (ms™') 1500

5.2 Comparison between Attenuation and Modes of
Vibration

The modes of vibration of an immersed cylinder can be obtained using commercially
available software based on the numerical solutions mentioned earlier. In this section
a comparison between these modes and a JED model of attenuation is presented. The
comparison is done for the specific case of the nylon fibres in suspension using the material
properties given in table 5.1 and a fibre radius of 26 um (as used in Paper D). The
frequency range examined was 1-25 MHz. Since the JED non-viscous model has shown
to adequately model nylon fibres in suspension (Paper D), this model is used in the
comparison. In the calculation of the modes, the surrounding fluid is assumed to be
non-viscous and the fibre material is assumed to be isotropic. The parameters used in
the mode calculation were as for the JED non-viscous model.

The modes are calculated using the software, Disperse, developed by Lowe and
Pavlakovic at the Imperial College London, UK. The software is designed for analysing
of the modes in wave guides and is based on their work in this area [54]. The model used
by Disperse for calculating the mode of cylindrical wave guides is based on the general
solution for the propagation of waves in hollow cylinders [55,56]. The modes are found
by obtaining a global matrix (GM) made up of the partial waves in a similar way to the
matrix of the system of equations used in the JED models for calculating the reflection
coefficients, B,,. However, the objective when establishing wave guides modes, is to find
the modal response of the GM and subsequently to find the guided waves that propa-
gates along the axis of the cylinder. This is done by iteratively varying three parameters:
frequency, wave number and attenuation until valid combinations of these three form
guided waves [26]. The valid solutions are when the determinant of the GM is zero.

The exact details of the differences between the system of equations used in the JED
models and the GM have not been examined. However, the assumption used by Pal-
vakovic and Lowe is that the wave propagates in z direction [26], which is not necessarily
the case in the JED model when the angle of incidence can be set to zero. For example,
in Paper D normal incidence is used in the comparison between the JEDv1 model and
the model used by Flax and Neubauer [57].

The partial waves in the global matrix used by Palvakovic and Lowe each have two
directions, whereas in the JED models, only one direction of the partial waves is consid-
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Figure 5.5: The GM solutions calculated for a nylon cylinder immersed in water with a radius
of 26 um with the material properties given in Table 5.1. The modes have been labelled with the
first number indicating the circumferential mode. The second number is arbitrary. The wave
with the prefix F, can be identified as a flexural wave. Note that the software was unable to link
the modes in the above cases and hence each point is a modal solution to the GM. Difficulties in
locating the modes of vibration meant that a search for minimum values was used as a starting
point for the search the modes of vibration. These minimum values appear as extraneous points
in the figure

ered. This suggests that one would find the system of equations used for calculating the
attenuation to be a subset of the GM.

Figure 5.5 show the phase velocity, plotted again frequency, of the modes propagating
in the z direction and calculated from the GM. The angle of incidence required to excite
a mode, when the incident wave is propagated in water, can be calculated from phase
velocity of the mode and the velocity of the wave in water.

The attenuation from the JED model is averaged over all angles of incidence. It
is also the sum of n terms associated with 6 (circumferential terms). To compare the
features in the attenuation with the modes of vibration, the attenuation is calculated
for one angle of incidence and for one of the series of the circumferential term. This is
done since otherwise attenuation from each of the different n terms and each angle are
superimposed on one another and the individual features of the attenuation due to each
term and angle are lost.

Figures 5.6 are plots of the zeroth circumferential modes and the attenuation for the
n = 0 circumferential terms for two different angles. The frequency at which a mode is
excited in shown in figure 5.6(a) as the frequency at which the mode line intersects the 30°
line. The corresponding attenuation (¢» = 30°, n = 0) is plotted in figure 5.6(c). At the
frequency of mode excitation, it can be seen that the attenuation drops and immediately
increases just after this point. Similar plots of the mode line and attenuation but with
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Figure 5.6: Comparison of modes of vibration (zeroth circumferential mode) and modelled at-
tenuation, for the n=0 circumferential terms, for two different angles of incidence.

1 = 60°, are plotted in figure 5.6(b) and 5.6(d). Figure 5.6(d) also shows that the
attenuation drops despite the fact that the 60° line does not intersect with the mode
line. The fact that the lines do not intersect implies that this wave mode could not be
excited when ¢ = 60°. It is uncertain if there are numerical differences that cause this
mismatch of the results or if the effect of this mode coming close to being in existence
at this point is sufficient to cause a minimum in the attenuation. Note that in the case
for ¢ = 30°, this minimum occurs just under 20 MHz and when ¥ = 60° the minimum is
around 22 MHz.

The other maxima that can be seen in the attenuation in figure 5.6 are at 16 MHz
where the angle of incidence is 30° and at 22 MHz where the angle of incidence is 60°.
No mode excitation is found to correspond to this these maxima. However, it is possible
that this is due to a failure of the iterative process used to find the mode. The modes
are found using a search routine for finding the values of frequency, wave number (of the
axially propagating mode of vibration) and attenuation that solve the GM. The first part
of this is a coarse sweep of two of the parameters with the third held constant to find
minima in the determinant. After this, a fine search is used to find the solution. It is
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Figure 5.7: Comparison of modes of vibration (first circumferential mode) and modelled atten-
uation for the n=1 circumferential terms for two different angles of incidence.

possible that a coarse sweep was not done in the correct region to be able to locate this
root. An alternative reason is that the software specifies that only modes propagation
in the z are located [26]. It may, therefore, be possible that this maxima is caused by a
purely circumferential mode and hence would not be detected by the software.

Similar plots are shown in figures 5.7 - 5.9 for n = 1 to n = 3. In all the figures where
n > 0, the attenuation has a maximum at the frequency where the mode is excited. These
maxima for n > 0 are caused by an increase in the radial displacement at the frequency
at which a mode or modes are excited. This increase is radial displacement, suggested
by Pavlakovic and Lowe [26], absorbs energy and hence the attenuation increases.

However at n = 0, there is a minimum in the attenuation. This is attributed to there
being little radial displacement in this mode and hence little energy is leaked into the
water [26].

Figure 5.7 shows the comparison of the first circumferential modes and the attenuation
for the n = 1 circumferential terms. Figure 5.7(c) is a plot attenuation at ¢ = 30°
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Figure 5.8: Comparison of modes of vibration (second circumferential mode) and modelled
attenuation for the n=2 circumferential terms for two different angles.

(n=1). In figure 5.7(a) the intersect of the 30° line and the mode lines M[1,1] and M[1,3],
are at the frequencies at which these modes are excited when ¥ = 30°. These mode
excitation correspond to obvious maxima occurring in the attenuation plotted in figure
5.7(c). However the impact of the excitation of M[1,2] on the attenuation is difficult to
assess when ¢ = 30° as it crosses at the same point as M[1,1]. The match between the
frequencies at which maxima occur in the attenuation and frequencies at which modes
are excited is similar in the case of ¢ = 60° (shown in Figures 5.7(b) and 5.7(d)) except
that the frequencies at which the modes are excited is higher. At ¢ = 60° there appears
to be little or no effect of the M[1,2] mode on the attenuation.
Figure 5.8 shows the plots for the second circumferential modes and the attenuation
for the n = 2 circumferential terms. As seen for both the incident angles plotted, there
is a good match between frequencies at which the modes are excited and the frequencies

at which maxima appear in the attenuation.
In figure 5.9 the comparison between the third circumferential modes and the attenu-
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Figure 5.9: Comparison of modes of vibration (third circumferential mode) and modelled atten-
uation for the n = 3 circumferential terms for two different angles incidence.

ation for the n = 3 circumferential terms is shown. There is again a good match between
the mode excitation frequencies and the frequencies of the maxima in the attenuation.
Note the maximum in the attenuation, when ¢ = 60° for the mode M[3,1], is very small
and hence is marked with a circle.

The good match between the mode excitations and the extrema in the attenuation
aids in the validation of the JED models. This comparison can also be used to identify
the modes causing the maxima in the experimentally derived attenuation. Examining
a plot of the modelled attenuation for the nylon fibres in figure 5.10, the maxima are
difficult to distinguish as the loss tangent is large. A plot of the attenuation using a lower
loss tangent allows identification of the different modes as shown by the dashed line in
figure 5.10.

As can be seen by comparing the maxima in Figure 5.10, with those in figures 5.7 -
5.9, the dominant maxima are those from the lower frequency modes, M[1,1], M[2,1] and
MJ3,1]. Interestingly, the other maxima from the other modes are not distinct despite
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Figure 5.10: Modelled attenuation in a suspension of nylon fibres in water. The cylinder radius
was 26 um and the material properties used are given in Table 5.1.
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Figure 5.11: Plot of the attenuation of three different incidence angles. Figure 5.11(a) is the
attenuation considering only n = 1 circumferential terms and figure 5.11(b) is the attenuation
considering only n = 2 circumferential terms.

the fact that when examined individually the impact they have on the attenuation is
considerable. The reason is because these latter modes show a stronger relationship
between the angle of incidence and the frequency than the M[1,1], M[2,1] and M]3,1]
modes. The M[1,1], M[2,1] and M][3,1] also have a strong relationships to the frequency
but these appear at velocities below that for the fluid, ¢;. Because the lowest velocity that
can be excited is ¢; (1500ms™!) these relationships are not apparent. For these higher
frequency modes, in general, a decrease in the wave velocity in the z direction (lower angle
of incidence), increases the frequency at which the mode is excited (see figure 5.5). Since
the attenuation is determined for randomly orientated fibres and hence is average of the
attenuation of all angles of incidence, this shift in frequency with incident angle means
that the effect of the excitation of these higher modes on the attenuation is effectively
dampened out. This is shown in figures 5.11(a) and 5.11(b).
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Figure 5.12: Diagram of the mode shape of M[2,1] at two different instants of the motion

The result is that in the total attenuation in a suspension of randomly orientated
fibres, the main source of the resonance features is due to the modes M[2,1] and M[1,1].
The mode M][3,1] also appears to have an effect when the loss tangent is low, but as can
be seen in figure 5.10, when the loss tangent is higher, this is barely distinguishable.

5.3 Examining the major modes

Once the modes causing the maxima in the attenuation are identified, they can be ex-
amined more closely to gain information on which elastic properties affect them. Thus
the elastic properties that can be expected to be determined from these attenuation
measurements are identified.

Figure 5.12 shows the shape of the mode M[2,1] responsible for the first maximum
seen in the attenuation at 9 MHz in figure 5.10. This mode would produce a quadrupole
radiation pattern in the r — 6 plane. The mode also has very little deformation along
the z-axis. In both the JED models and the GM calculation of the modes used in this
comparion, the material is assumed to be isotropic. In general, fibre materials can be
more accurately described as transversely isotropic than isotropic, for example polyester
and nylon fibres. A transversely isotropic (T-isotropic) material [53] can be defined by 5
elastic constants (as opposed to 2 in the isotropic case) and these are E,,., E.., G,.,Gg,
and v, (See Section 5.3.1). Assuming an isotropic material when the material is T-
isotropic would definitely affect modes that have strain in both the r» — 6 plane and along
the z axis. It is less certain that a mode with little or no z dependance would be affected,
assuming that the motion is calculated based on the transverse properties. This implies
that the mode illustrated in figure 5.12 is related to the transverse properties of the
material rather than the longitudinal properties. Measurement of attenuation capturing
this mode would then give estimates for the transverse properties of the material.



45

Figure 5.13: Diagram of the mode shape of M[1,1] at two different instants of the motion

The next maximum in the attenuation, shown in figure 5.10, is at 11 MHz and is
caused by the mode M[1,1]. The resulting motion is a tilting movement about the line
r,7’" as shown in figure 5.13. A view of the mode in the r, z plane is shown in figure 5.14.
As can be seen this is a shearing motion in the 7, z plane. Hence it would be expected
that this mode would give estimates for the shear in the longitudinal direction, G,..
This supports the findings in Papers D and Papers F. However unless G,, ~ Gy, the
behaviour of this mode when the material is assumed to be isotropic instead of T-isotropic
could be affected. It would be of interest to investigate further the difference between the
modes of a cylinder of T-isotropic material and those of a cylinder of isotropic material.
This can be done by using the GM to calculate the modes of a cylinder of T-isotropic
material and of particularly interesting would be any changes to the M[1,1] mode.

The final mode that causes a maximum in the attenuation curve, though marginally
when the loss tangent is high, is the M[3,1] mode. The behaviour of this mode is shown
in figure 5.15. As can be seen from its shape, the greatest displacement is in the r,6
plane. Hence it is expected that the main properties governing this motion would be
those in the transverse direction. As before, this suggests that inaccuracies due to the
assumption of an isotropic material would not affect this mode significantly. This is,
again, assuming that the motion is calculated based on the transverse properties.

There is an potential problem in estimating the elastic properties from these modes
that is highlighted from their investigation. This is that the modes M[2,1] and M[3,1] are
largely influenced by the transverse properties, Ey ., Gy, of the material and the M[1,1]
is largely influenced by the longitudinal shear, G,,. If the fibre material is isotropic, the
elastic property estimates will not be affected. If the material is T-isotropic but G,. ~
Gy, again, there should be little problem in estimating elastic properties. However, if
the material is T-isotropic, such that G,. # Gy, then, at best, the transverse Young’s
modulus, Ey, and G,, can be estimated but the isotropic condition that —1 < v < 0.5
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(a) (b)

Figure 5.14: Diagram of the mode shape of M[1,1] at two different instants of the motion in
the r, z plane

S .
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Figure 5.15: Diagram of the mode shape M[3,1] at two different instants

will not hold hence neither will the relationships between the other elastic constants.
However, the consequences of this are likely to be more serious since the modes M[2,1]
and M][3,1] depend on both Ejy, and Gy, which would not be compatible with value for
G, estimated from the mode M[1,1]. A model based on T-isotropic material may have
to be used, if the accuracy of the isotropic model is inadequate.

Since the angle of incidence makes little difference to the frequencies at which the
modes M[1,1], M[2,1] and M[3,1] are excited, it is possible to study these modes under
the condition that that the incident wave is perpendicular to the cylinder (¢» = 0). This
simplifies the JED non-viscous model considerably to the models used by Faran [58] and
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Figure 5.16: Comparison between the attenuation with a incidence angle of ° and attenuation
from randomly orientated fibres. Figure 5.16(a) is with a loss tangent of 0.2 and figure 5.16(b)
is with no intrinsic loss in the fibres.

Flax et al. [59,60] and use can be made of these authors interpretation of these modes
of vibration. This was investigated to some extent in Paper C. The results of this paper
showed that the resonance peaks in the back-scattering models [58—60] were at the same
frequencies as the peaks in the attenuation (¢» = 0). However, in the derivation of the
surface waves (Franz, Stoneley and Rayleigh waves) by Flax et al. [60] it was assumed
that the wavelength was much smaller that the diameter. No such assumption can be
made for fibre suspensions and hence it was concluded that it is difficult to establish
which kind of waves cause the maxima in the attenuation. More work could be done in
this area.

However, although normal incidence models can be used to analysis the type of modes
that are excited, this does not mean the attenuation of randomly orientated fibres is the
equivalent to attenuation of fibres lying normally to the incident wave. As can be seen in
figure 5.16, although the first three maxima appear at approximately the same frequencies
their effect on the amplitude of the attenuation at that frequency is different. Also, the
modes at higher frequencies make a considerable difference to the level of attenuation at
higher frequencies.

In conclusion, the wave modes that cause the maxima in the attenuation in a sus-
pension of solid cylindrical scatterers have been identified. Their relation to material
properties has been briefly investigated. This comparison also highlights a potential
problem with the assumption of an isotropic material used in the JED models in their
application to T-isotropic fibres. The possibilities of a more thorough investigation on the
modes of vibration could be done by comparing to previous studies on mode of vibrations
of cylinder with normal incidence excitation since the frequency of these modes causing
the maxima do not have a strong relationship to ). However, when fitting the modelled
attenuation to the experimental attenuation, all modes must be considered and not just
the modes contributing to the maxima as there is a considerable difference between the
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attenuation when ¢ = 0 and the average attenuation of the all orientations.

5.3.1 Transversely Isotropic Material

In a material with cylindrical orthotropy, the relationship between the stress, 7;;, and
the strain ¢;; in terms of compliance is

€y Si1 Sz Sis

0 0 0 Ty
€00 Sss Sss 0 0 0 Too
(S o Sgg 0 0 0 Tzz
€o a 544 0 0 To~ (5.1)
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and the compliance relation is describe by 9 independent elastic constants [61].

A transversely isotropic materials is a special class of the orthotropic material which
have the same properties in one plane (r,0) and different properties in the direction
normal to this plane (z). Hence

S = ;TT = Sy = E%}g%
So E,.. = FEgg and vy, = vy
Su = Glgz = S55 = Glr;
So Gy, = G, and
S11 — S12 = See; ! ;:m = Gng;

hence E,., = (1 + vy,)G,a 50 v, does not need to be estimated. This leave E,,., E.., G,.,
Gre and v,



CHAPTER 6

Parameter Estimation

The earlier chapters have dealt with the modelling of attenuation in suspensions of cylin-
drical scatterers. Assuming that the attenuation can be modelled, the next step is to
use the model to solve the inverse problem. What is an inverse problem? The inverse
problem is where a model is used to establish the inputs to the system from a known
output.

There are some obvious issues with the inverse problem. To illustrate, the result of a
sum is 10 and is the result of 2 numbers added together thus model is established. The
problem is that 5 and 5 and 3 and 7 are equally valid solutions. So unless a better model
is available, the solution will be non-unique. This is an example of an ill-posed problem.

A well-posed problem is one where a solution: exists, it is unique, and that the
solution depends continuously on the data. Even if a problem is well-posed, it is not
necessarily well-conditioned. A well-conditioned problem in non-mathematical terms, is
when errors in the solution are related to errors of approximately the same magnitude in
the dependent variables [62]. An example of an ill-conditioned problem is if there were
a small error in the attenuation, it would result in large errors in the estimation of the
shear wave speed.

Parameter sensitivity is also an important aspect in solving the inverse problem. This
is where changes in the parameters of the model or in the physical properties of the system
do not result in changes in the output. For example, a change in the compression wave
velocity of the fibre does not result in changes in the attenuation.

The lack of sensitivity of the output to the parameter of interest classes the system
as an ill-posed problem as the solutions are non-unique and since there is more than one
value that gives the same output.

The method of establishing values of the parameter is done by optimizing the fit
between the modelled output and the measured output. This is generally done using a
search algorithm. This algorithm will have certain criteria that it should meet before
returning a result. For example a change in the parameters, for which the values are
being searched, causes a change in the output that is below a certain tolerance. Once
these criteria are met, the results are returned. The results are a single value for each of
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the parameters. As there is only one value returned for each parameter, a single value
is returned for parameters that would theoretically give non-unique solutions. A small
error in the attenuation or a different initial starting point would give a different value
for the parameter. The result is that a small error in the attenuation gives large errors in
the parameter of interest and the problem can be seen as being ill-conditioned. Hence,
the parameter sensitivity can be related to the degree of ill-conditioning.

The parameters estimated from the JED models were all properties of the suspension.
In all cases, the properties of water were assumed to be known as was the density of the
fibre material. The three main properties estimated were the compression wave velocity,
Cac, Poisson’s ratio, v, the loss tangent, tan d. In Papers F & G, in addition to these three
properties, the volume fraction was also estimated within narrow boundaries to allow for
errors in the measurement.

Establishing values for these properties is done by optimizing the fit between the
modelled attenuation and the measured attenuation. This is done by minimizing the
difference between the modelled and the measured attenuation. The difference is quan-
tified by a cost function, V. This cost function is defined to suit the problem. The cost
function used in all cases was

N
V=" |mn — enl? (6.1)
n=1

where qy,, is the attenuation of the model at the n™* frequency interval and «. is the
attenuation calculated from experimental measurements at the n'* frequency interval. N
is the maximum number of frequency intervals used. The frequency intervals used were
a subsample of the measured signal. The subsample start value and end value was set by
the amplitude of the attenuation i.e. by the energy in the reflected signal. The subsample
rate was chosen so that the main features of «a, were represented. This subsample rate
was lower than the sample rate of the signal because of the computational time taken
to calculate at higher rates. The points on the experimental attenuation curves shown
in the papers where a comparison is done between the model and the experiments are
marked with the subsample intervals.

6.1 Search Algorithm

To minimise V', a search algorithm is used. The algorithm used was an interior trust
region and that can be subject to bounds on the parameters [63]. It is based on the trust
region method for unconstrained minimisation which can be expressed as

o 1 _
min{yy(s) = gl's + ESTBks | Disl| < Ay} (6.2)
Where g, & Vf (). By is the symmetric approximation to the Hessian matrix

V2f(zy). Dy is the scaling matrix and A, is a positive scalar representing the trust
region size. The symbols || - || denote the 2-norm. More details are given in the article.
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Table 6.1: Parameter values

Parameter Symbol Value
Frequency f 1-15MHz
Radius R 20 pm
Density p 1390 kgm 3
Loss tangent tand 0.3

wave velocity (water) G 1498 ms™!
Density p1 1093 kgm ™3
Volume Fraction Ir 0.13%.

Equation 6.2 is given to show the basis of the algorithm used. Neither the choice of
algorithm nor the details of its function are dealt with in this thesis. However the
method of estimating material properties from attenuation measurements would benefit
from further work.

6.2 Parameter Sensitivity of the JED Model

To asses the influence of a specific parameter (in this case a material property) has on
the JED modelled attenuation, this paramater is changed and the effect this has on the
attenuation is calculated.

The influence of the shear and compression wave velocity in the solid (czs and ca,
respectively) are investigated since it is from these values the elastic moduli can be
obtained assuming the density, ps is known.

The attenuation over a range of values for cp. and cys for a range of frequencies was
calculated. The difference between these attenuation curves and the attenuation curve
at a fixed value of ¢y, and ¢y, was calculated using equations 6.1 and 6.2. The fixed value
or reference point was ¢y = 2000 ms~! and ¢y, = 750ms~'. The other parameters were
kept constant and their values are given in Table 6.2.

Plotting V' against the range of values of ¢y, and cos shows the degree by which the
attenuation changes with changes in ¢y and cys. Note that since the material is assumed
to be isotropic and Poisson’s ratio, v is set such that v > 0, this puts the limit on ¢y, as
Cae > V/2¢95. The isotropic condition sets the upper bound on v as v < 0.5. Contours of
the level of V' over cy. and ¢y are plotted in figure 6.1(a). The different colours represent
different values of V. The values of ¢y, and ¢, that correspond to areas of blue have
low V and hence there is little difference between the attenuation at the reference point
and the attenuation calculated using these values of ¢o. and cos. The plot shows deep
troughs, where co, is constant, but co, varies. The presence of the three troughs, seen
more clearly in the surface version of the same plot (Fig. 6.1(b)), implies that the model
is sensitive to co4 in that it only gives three distinct values for co, but it is less sensitive
to the value of cy.. This is because values of ¢, which vary along the base of the trough
shown in figure 6.1(b), give approximately the same value of attenuation.
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Figure 6.1: Fig. 6.1(a) is a contour plot of V' against coe and cos. Fig. 6.1(b) is a 3D surface
of V' against ca. and cos. The crosses mark the convergence points of the search function.

Figure 6.2: Plot of the randomised starting point used to investigate the sensitivity and in papers
D and E

Although these troughs exist, the lowest point is only at the fixed point which shows
that there is only one global minima. This means that it should be possible to correctly
identify the material properties of co. and cos assuming the values of tand and p were
known.

Since the existence of a global minima has been established for this case, the ability of
the trust-region reflective Newton algorithm to locate the global minimum is then tested.
This is done because being able to locate the global minimum from any starting point
means that the method of estimating the elastic properties will not be dependent on the
starting point. For the method to be robust, an algorithm that converges to the global
minimum is required.

The random starting points used in Papers E and F were used in this test and are
plotted in figure 6.2. The resulting converging points of the algorithm are plotted as
crosses on figure 6.1(a). 17% of the starting points sucessfully converge on the reference
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Figure 6.3: Points of convergence of the randomised starting points when tand is also optimised
by the trust-region reflective Newton algorithm.

point. The majority of the other starting points converge at or very close to the bound-
aries of the parameters. A more sophisticated cost function which penalised values lying
close to the boundary would prevent the initial values converging on the edges of the
boundaries and increase the number of points converging on the reference value.

The above analysis assumes that p and tané are known. The likelihood of knowing
the density of the fibres material of the fibre in suspension is high since this can often be
obtained by other measurements. However, knowing the loss tangent is unlikely if one
does not know ¢y, or co5. Hence the influence tan § has on the sensitivity should also be
considered.

If the algorithm is used to optimise tand as well as ¢y, or o5 the points converge as
shown in figure 6.3(a). This is using the same randomised starting points as used above.

These convergence points match with local minima in V. This is illustrated for two
cases: in figure 6.4(a) with tan 0 = 0 and in figure 6.4(b) with tan § = 0.03. The points
marked with a circle are the convergence points with a value of tand that equals the
contour plot. Hence it can be seen that the convergence points are where V is local
minimum.

When tand is not fixed, it can be seen that there is a convergence point that is
in the centre of the range of ¢y, and cys. So, even penalising the values close to the
boundaries would not remove this local minimum. However, at this convergence point
the attenuation curve does not contain the resonance features as shown in figure 6.5. It
may, therefore, be possible to modify the cost function such that if a resonance feature,
i.e. a point of zero gradient, exists in the attenuation curve to which the comparison is
being made, then it should also exist in the optimised curve, or at least weighted so that
values causing a resonance feature would have a lower cost function.

Studying the sensitivity plot, it can be seen that at ¢y, > 4000 the contours are flatter,
showing the cost function does not vary in this region. This suggests that it would be
difficult to identify materials with properties in this region due to the low sensitivity of
the cost function to ¢y, and ca,.
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Figure 6.4: Two examples of plots of V over a range of values of ca. and cas and a specific
value of tan 0. In figure 6.4(a)), tand = 0. The point of convergence that also have tan § = 0
are marked with a circle. In figure 6.4(b)) tand = 0.03 hence the point marked with a circle is
that with tan 6 = 0.03
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Figure 6.5: Plot of the attenuation at the convergence point, co. = 7100, cos=2800. The solid
line is the reference attenuation and the dashed line is the attenuation calculated using the
aforementioned values of coe and cas.

In conclusion, the sensitivity study shows that the model is more sensitive to coq
than ¢y, but that there is a global minimum, hence if the model accurately predicts the
attenuation and there is low noise, it is possible for cs., cos and tand to be identified, if
the solution lies at or near the reference point tested. A more sophisticated cost function
reduces the dependency of the method of estimating elastic properties on the starting
point.



CHAPTER 7

Online Considerations

The objective is to make the measurement method an online system. The implications of
this should then be considered. The following is a brief discussion of these considerations.

To be an online system the three parts of the measurement method should be consid-
ered. These are the measurements of the attenuation, the model used and the estimation
of the elastic properties from the model and measurement data.

7.1 Measurements

Affecting the measurements are the transducers, the working frequency range and any
disturbances to the signal that are not modelled.

The transducers used in the experiments were standard, commercially available ones.
It should therefore not be a problem basing an online system on these transducers.

The frequencies used should be those which excite wave modes, to increase the accu-
racy of the estimation process. However high frequencies are more difficult to implement
in a measurement system as they attenuate more than lower frequencies and hence the
distance travelled by the pulse must be reduced in order that the signal to noise ratio
is sufficiently high. The experimental results used a frequency range of 2-30 MHz and a
distance travelled by the pulse of 20 mm. A system based on these dimensions would be
desirable.

The signal is potentially disturbed by a number of factors that should be investigated.
These are

1. temperature
pressure

fines

air bubbles

additives (e.g. fillers)
dirt

AT e

95



56 ONLINE CONSIDERATIONS

7.2 Model and Estimation Process

The model and the estimation process are treated together since it is their combined
effect that has an impact on whether or not the system can be implemented as an online
one.

In addition to the attenuation measurement, the model requires the cross-sectional
geometry of the fibres. In the experiments carried out on pulp, these measurement were
obtained from the PulpEye pulp analyser system [64] and laboratory measurements of
the fibre wall thickness. Online fibre wall thickness measurements are currently being
developed [65]. Systems for obtaining this information should be available presently.

Speed of Computation

The objective for an online measurement system is that the results be available within
the time taken for a control loop to be executed.

The current speed of computation varies from 40 minutes to several hours depending
on the starting values. This is running on a single 2.5 GHz processor and no work has yet
been done on the speed of the computation of the elastic fibre property measurements.

The following are suggests for improving the speed of the computation and have not
been tested.

Cost function 1

The minimisation of the error between the measured and modelled attenuation uses a
search algorithm. This searches the entire valid space, with different initial values. Once
the first values have been established, these could be used as the starting point for the
next estimation. Hence greatly reducing the time taken for the estimation.

Cost function 2

Alternatively, the cost function can be modified using the suggestion in Chapter 6, which
would reduce the dependancy on the initial values. This would reduce the number of
different starting points required to locate the global minimum and hence reduce the
search time. Once first results for a pulp are established they could then be used as the
start for the next iteration which again would reduce the search time.

Discrete values of the estimate

Given the discrepancies between the shapes of the fibres and the regular shapes used
in the model and the variation in the fibre properties, the accuracy of the method will
not very be high. Therefore it is unnecessary to search for slight changes in properties.
This point has not been used in the estimation process and would be likely to contribute
significantly to the speed of the process.
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Integration

The integration over all angles is done based on a gradient estimation procedure. Whilst
this increases the speed of the estimation in the current implementation, it is not con-
ducive to making the code parallelised. Using trapezoidal numerical integration, although
slower would allows the process to be more easily distributed over a number of processors
and hence the speed would be proportional to the number of processors.

Distributed radii

Calculation for the different radii is also a calculation that can be easily parallelised since
one result is not dependent on the other. This is another part of the process where the
speed would be proportional to the number of processors used.

Programming language

The code is written in Matlab, Mathworks Inc. This is an excellent tool for evaluation
different methods and testing different algorithms. However, it is slow so once an algo-
rithm for the search part of the estimation process has been evaluated and decided on,
the code can be written in a lower level language, such as ‘C’.

A commercial optical pulp analyser takes typically 15 minutes from the time the pulp
enter the system before the results are analysed. This means that the method for de-
termining elastic properties has a maximum of 15 minutes before any loss of data will
occur.
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CHAPTER 8

Summary of the Papers

This section give a summary of each paper included in the thesis. It includes a comment
for each paper on my personal contributions and the involvement of the other authors.
Torbjorn Lofqvist has been my supervisor throughout and his was the original idea of
characterizing paper pulp using ultrasound.

8.1 Paper A - Estimating Suspended Fibre Mate-
rial Properties by Modelling Ultrasound Atten-
uation

Authors: Yvonne Aitoméki and Torbjérn Lofqvist

Reproduced from: Proceedings of International Conference of Mathematical Modelling
of Wave Phenomena 2005

Summary

The JED model v1 (see Chapter 3) is described in detail. This is compared to the model
that includes thermal and viscous shear effects in the fluid derived by Habeger [32].
Experimentally derived attenuation for a suspension of nylon fibres cut from fishing line
in water is compared to the predicted attenuation from the model. The nylon used
in the fishing line is a polyamide copolymer so the exact material properties of the
fibre were difficult to establish since the type of the copolymer was not known. The
results lay between those expected for nylon 66 and nylon 6. Resonance peaks in the
attenuation were both predicted and found experimentally. The conclusion was that the
model appears to be sufficiently sensitive to material properties. Thus estimations of
these properties from the attenuation may be possible.

Personal contribution

Work was carried out by Aitoméki with consultation with Lofqvist. The paper was
written by Aitomaéki and Lofqvist.
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8.2 Paper B - Ultrasonic Measurements and Mod-
elling of Attenuation and Phase Velocity in Pulp
Suspensions

Authors: Jan Niemi, Yvonne Aitoméki and Torbjorn Lofqvist
Reproduced from: Proceeding of IEEE Ultrasonic Symposium, Rotterdam, Holland 2005

Summary

This paper introduces a method of performing phase unwrapping that minimises disconti-
nuities in the phase shift. This is used to calculate the phase velocity in pulps of different
consistency. The results show that dispersion is caused by fibres and correlates with
mass fraction. Attenuation measurements of pulp are also made, with the aim of finding
resonance peaks in the frequency response of the attenuation predicted by the model.
Clear peaks are not found. This is thought to be due to the effect of the distributed
radii of the pulp fibres. Estimations of the properties are made from these curves but
comparison with known values was not done. This is due to the difficulties in carrying
out single fibre tests on saturated wood fibres.

Personal contribution

The experiments and the phase velocity work was carried out by Niemi and Lofqvist.
The attenuation theory and calculations was carried out by Aitoméki. The paper was
written by Niemi and Aitomaki and Lofqvist.

8.3 Paper C - Inverse Estimation of Material Prop-
erties from Ultrasound Attenuation in Fibre sus-
pensions

Authors: Yvonne Aitoméki and Torbjorn Lofqvist
Reproduced from: Elsevier Ultrasonics, Volume 49, Issues 4-5, May 2009, Pages 432-437

Summary

In this paper experiments on nylon 66 give evidence for the effect different fibre radii
have on the attenuation. This supports the JED model. An estimation process is im-
plemented which estimates material properties that give the best fit between the model
and the measurement attenuation. The results show that the shear modulus is within
the expected range based on previous studies. The Young’s Modulus is underestimated
even when compared to transverse values for the material.

Personal contribution

Work was carried out by Aitoméki with consultation with Lofqvist. The paper was
written by Aitoméki with considerable comments and corrections provided Lofqvist and
the journal reviewer.
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8.4 Paper D - Sounding Out Paper Pulp: Ultra-
sound Spectroscopy of Dilute Viscoelastic Fibre
Suspensions

Authors:Yvonne Aitoméki and Torbjorn Lofqvist

Presented at Acoustics and Ultrasonics in the Processing of Industrial Soft Solids Con-
ference, held in Leeds, February 2005. The proceedings were sent but as yet have not
been published.

Summary

The reason why the resonance peaks appear in the frequency response of the attenuation
is explored in this paper. The influence of the shear wave velocity and the fibre radius on
the resonance of the first peaks is shown. Hence, experimentally determining the location
of the first resonance peak would help establish the value of the shear modulus. This
supports the results in Paper D, which showed that the shear modulus was estimated
to within a previously established range. The reason that the first resonance peaks are
associated with shear waves is because shear wave velocity is lower than compression wave
velocity. The exact nature of the wave that causes this resonance is not yet established,
since the proof that they are Rayleigh waves relies on asymptotic values for the Bessel
functions, which are only valid for ka > 1, where a is the radius and k the wave number
of the wave in the fluid. Since this is not the case with the fibre suspension used, the
conclusion that the peaks in attenuation are also caused by Rayleigh waves cannot be
drawn.

Personal contribution

Work was carried out by Aitomaki with consultation with Lofqvist. The paper was
written by Aitoméki. Feedback and comments were provided by Lofqvist.

8.5 Paper E - Damping mechanisms of ultrasound
scattering in suspension of cylindrical particles:
Numerical analysis

Authors: Yvonne Aitomaki, Jan Niemi and Torbjérn Lofqvist

To be submitted to: Journal of the Acoustical Society of America

Summary

The addition of viscosity to the ultrasound scattering models increase complexity. This
paper investigates whether or not the addition of viscosity is necessary in a suspension
of cylindrical scatterers when their radii is of the order of the wavelength and is not
close to the viscous skin depth. The modelled attenuation of a scatterer surrounded by
a viscous fluid is compared to that where the fluid is non viscous. The results show
that the intrinsic loss in the scatterer and the viscosity both have a damping effect on
the attenuation. Hence, with high intrinsic loss (tand > 0.1), the effects of viscosity is
negligible. This holds if the frequency is not in the region where the viscous skin depth
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equals the radius.

The conclusion is that a simpler model where the fluid is assumed to be non-viscous
can be used to model attenuation in suspensions of fibres with tand > 0.1.

Personal contribution

The original idea was that of Lofqvist. Work was carried out by Aitoméki with consulta-
tion with Lofqvist. The paper was written by Aitoméki. Feedback and comments were
provided by Lofqvist and Carlson, whose help is gratefully acknowledged.

8.6 Paper F - Estimating material properties of solid
and hollow fibres in suspension using ultrasonic
attenuation

Authors: Yvonne Aitoméaki and Torbjorn Lofqvist
To be submitted to: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control

Summary

This study firstly investigates the difference in attenuation measurements between solid
and hollow fibres in suspension. Secondly, it tests whether a solid model (JED non
viscous distributed radii) is sufficient for modelling hollow fibres or whether a hollow
model (JED hollow distributed radii) should be used. The measured attenuation in
suspensions of hollow and solid fibres of the same material, polyester, are compared. A
comparison is then done between the estimated material properties obtained from using
these different models on the different measurements of attenuation. The results show
that the solid model gives good results with solid fibres in suspension and the hollow
model gives reasonable results with the hollow fibres in suspension. Both of these results
compare well with reference values for block polyester. However the solid model with the
hollow fibres suspension gives poor estimates of elastic properties despite giving the best
match to the modelled attenuation and the measured attenuation.

On a more general scientific note, this paper highlights the point that a good fit
between data and the model does not necessarily mean the model gives a correct inter-
pretation of the behaviour of the system. It may simply mean there are sufficient degrees
of freedom in the model to allow a good fit to be achieved.

Personal contribution

Work was carried out by Aitoméki with consultation with Lofqvist. The paper was
written by Aitoméki. Feedback and comments were provided by Lofqvist and Carlson,
whose help is gratefully acknowledged.
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8.7 Paper G -Comparison of softwood and hardwood
pulp fibre elasticity using ultrasound

Authors: Yvonne Aitoméki and Torbjorn Lofqvist

To be submitted

Summary

This paper is a preliminary test of the model on fibres in pulp. A comparison is done
between the estimated values for elastic moduli between softwood and hardwood fibres
after refining. The estimates are obtained from fitting attenuation measurements from
these pulps to modelled attenuation. The model used is a layered cylinder model, where
the surrounding fluid is assumed to be non-viscous and the distribution of the fibre radii
is also considered (JED hollow distributed radii). The measurements are made on pulps
with negligible fine content and at pressures of approximately 5 bars. This high pressure
reduces the size of the air bubbles in the suspensions, that otherwise could significantly
attenuate the ultrasound. An optical measurement device is used to measure the fibre
geometry with the exception fibre wall thickness. The wall thickness and the mass fraction
were both established by laboratory measurements of the pulp samples. The results show
that there is little difference between the estimates of the elastic moduli for the hardwood
and the softwood pulp fibres. The results for softwood are 1.6 GPa well to individual fibre
test from other work.

The results show that either the due to the processing these fibres undergo, they both
have similar values for their elastic moduli or that method is not sufficiently accurate
to detect differences between hardwood and softwood fibres. Based on the assumption
that the fibres are better described as transversely isotropic than isotropic, the results
of previous studies and the work done in chapter 5, the estimated value for the Young’s
modulus is likely to be that of the transverse plane (Ej,) of the fibres than of the axial
direction, F,.

Personal contribution

The original idea was that of Lofqvist and Aitoméki. The measurements were carried
out by Niemi and Aitoméki and Lofqvist. The estimates of the elastic properties was
carried out by Aitoméki. The method was written by Niemi and the rest of the paper
was written by Aitoméki. Feedback and comments were provided by Lofqvist.
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CHAPTER 9

Conclusion

The hypothesis set out in the introduction was: The measurement of the ultrasound
attenuation can be used to estimate the elastic properties of wood fibres in pulp online.
This was divided into three research question. These questions were investigated in the
thesis and are answered as follows:

1. Can elastic properties be estimated from ultrasound attenuation?

Concluding the work done in Papers D and F, the method can give estimates for
shear modulus and the transverse Young’s modulus of fibres. This is supported by
the investigation of the modes of vibration in Chapter 5. The aforementioned pa-
pers also highlight the importance of the outer fibre radius (or radii) and the radius
(radii) of the lumen on the attenuation. Consequently, this geometric information
is required in order to extract elastic properties from the ultrasonic signals. Optical
systems such as PulpEye [64] can provide values for the outer fibre radii and meth-
ods of obtaining the fibre wall thickness are currently being implemented [65]. The
radii of the lumen can be determined from these values. This provides sufficient
geometric detail to estimate the elastic properties of fibres.

2. Can the method be applied to wood fibres in pulp?

In the introduction it was stated that a model is required which captures only
the wood fibre properties that are important to attenuation. Concluding the work
in this thesis, the wood fibre can be assumed to be an infinitely long cylinder. It
cannot be assumed to be solid and hence a hollow model is required (Papers F & G).
The material of the fibre does not necessarily need to be modelled as transversely
isotropic. The method can give good estimates from assuming the material to be
isotropic (Papers D & F). In addition, the fluid in the model can be treated as
non-viscous, as wood fibres are viscoelastic [19] (Paper E).

The exact shape of the cross section of the fibres is assumed to not have an impor-
tant impact on the attenuation. In addition, the dependency of attenuation on the
elastic properties is assumed to have symmetric distribution about the average of
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the elastic properties. Given these assumptions the conclusion can be drawn that
the method can be applied to wood fibres in pulp (Paper G). Obviously, these
assumptions need to be verified. The further work section contains a discussion of
how this can be done.

Can the measurement method be used online?

Using a simple model in the method, decreases the computation time taken to es-
timate the elastic properties. Based on the work done, the simplest model that
could be used would be the layered cylindrical model that treats distribution radii
distribution (JED distributed radii). Implementation of the suggestions for reduc-
ing the computational time (Chapter 7) should allow the results to be available in
a time comparative to that of the optical results from current pulp analysers. The
computational time is, however, dependent on the number of processors used.

The measurement system used in Paper G was attached to as a module in a PulpEye
system. PulpEye is a pulp analyser and is available as an online version. Hence
it should be straightforward to make the measuring system itself online. Making
a standalone system would, however, require more work. The addition of fines
has not been addressed in this thesis. The impact of fines on attenuation and the
necessity of including a model for such particles would need addressing in an online
version of a system based on this method.

From these answers it can be seen that all the evidence so far supports the hypothesis
that the measurement of the ultrasound attenuation can be used to estimate the elastic
properties of wood fibres in pulp online and hence continued testing is justified.

There are certain conditions that need to be fulfilled for the method to have ap-
plication in the paper and pulp industry and it is these that should be tested. These
conditions are:

1.

2.
3.

The diameter distribution of the fibres is required as are estimates of the radii of
lumen.

The elliptical cross-section of the fibres can be treated appropriately.

A suspension of fibres with different elastic properties can be treated appropriately.

With these conditions fulfilled the shear modulus and the transverse Young’s modulus
of the pulp fibres can be measured. Thus a system with sensors based on this method
can be implemented.

With such a system, process efficiency and paper quality could be improved through:

1.

Improvement in the refining process based on fibre flexibility calculation obtained
from the geometry and the elastic properties.

. Early detection of inappropriate fibre stiffness in the paper manufacturing process.

Improvement in pulp fractionation allowing pulp to be better suited to the end
product.
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These all contribute not only to economic gains for the paper industry but are of
benefit to the wider community in terms of the reduced environmental impact that in-
creased energy efficiency produces and the increase in availability of energy by-products
from this industry.

to cook the pukp more tham was reawary, you can reflct on ithe
a method based on wbirasound atteruation!
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CHAPTER 10

Further Work

10.1 Further work

Modelling

For completeness, this method should be tested on isotropic fibres. This would provide
more confidence in the results. Glass is one of the few fibres that is isotropic and is
readily available hence is the obvious choice in such a test. An initial test was attempted
with chopped glass fibres with a diameter of 20 yum and a length of 12.7 mm. This proved
unsuccessful, as the fibres could not be easily separated. Attempts to separate the fibres
included baking in oven and boiling with sulphuric acid. Neither attempt was successful.
With hindsight, experience and a little patience, this is not a difficult test and could
be performed on longer, larger diameter glass fibres that could be cut to length in the
laboratory.

The assumption that the exact shape of the layered scatterer has little impact on
the attenuation requires validation before the method can be applied to wood pulp with
confidence. This can be investigated by examining the differences in attenuation between
ellipsoidal scatterers and regular cylindrical scatterers. However, ellipsoidal geometry is
considerably more challenging. It could be tested using simulations to some extent by
a comparison between the cylindrical model and the model developed by Hasheminejad
and Sanaei [66]. However, this would require the assumption of zero or negligible shear
as the theory only applies to fluid cylinders. The reason is that the equivalent function to
Bessel functions for ellipsoidal geometries are Mathieu functions as used by Harumi [67]
in expressions for an elastic ribbon (the extreme case of an ellipse). However, these
functions are not orthogonal hence one cannot solve for each series of n as one can for
the Bessel functions, unless there are special conditions. The implications of this are that
if it were necessary to model fibres as ellipses, using Mathieu functions the model would
become very large and complex. Alternatively, a model based on the T-matrix approach
would perhaps be more appropriate [68].

Perhaps an easier approach is to investigate experimentally ellipsoidal geometry by
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scaling the problem and using a much larger scatterer and low frequencies. This would
allow the geometry of the scatterer to be more easily controlled. A comparison between
the modes of a cylinder and an ellipse could be done and the effects on the amplitude
of the scattered wave after averaging over the surface at a distance from the scatterer
and over different incident angles. This would in fact be a similar experiment to that
done very early on by Faran in 1951 [58] on cylinders and spheres. The basis of the
experiment is that the attenuation is proportional to the reflection coefficient from a
single scatterer. It may also be possible to extrude elliptical fibres and test these directly
in suspension under the assumption that extruding to a different geometry has little effect
on the material properties of the fibre.

The next assumption that should be investigated before the method can be applied to
wood pulp with confidence is that the dependency of attenuation on the elastic properties
has symmetric distribution about the average of the elastic properties. This should be
simple to test and can be done by simulation. The model can be used to simulate the
attenuation from a mixture of fibres with different elastic properties. This attenuation
can then be compared to the attenuation from an average of the elastic properties. If
these two attenuations do not differ significantly, then the assumption is correct.

However, considering the modal behaviour of the attenuation this is unlikely and
hence it may be necessary to modify the model to allocate different fractions of the
suspension to different elastic moduli. It is difficult to predict whether there is sufficient
information in the attenuation signal to provide estimates for the elastic moduli of the
different fibres. The accuracy of the assumption that the dependency of attenuation
on the elastic properties has symmetric distribution about the average of the elastic
properties will depend on the distribution of these properties. Hence it will depend on
the type of pulp that is being tested.

Comparison to other methods

Alternatively, other methods of measuring the transverse elastic properties of fibres and
the longitudinal shear modulus could be investigated. For example an atomic force
microscope (AFM) could be used to measure these properties but differences in scale and
frequency make the comparison of these results difficult. Another method is to build
a composite of the fibres and from testing and modelling, derive the transverse fibre
properties. This would be of great value in validating the results for polymer fibres,
in particular fibres that are not affected by their immersion in water such as polyester.
However, the elastic properties of wood fibre when wet are known to differ from their
properties when dry [22] so it would be difficult to validate the estimation from the
ultrasound method using this technique.

Error Analysis

A basic attempt to test the sensitivity of the estimations to noise in the attenuation
measurement was carried out in Papers D, F & G by estimating the values from the
experimentally measured attenuation, o, + 20 where o is the standard deviation of the
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mean. A more thorough analysis of the stability of the model in general to noise in
the parameters could establish which parameters and to what degree, they influence the
attenuation.

Fines

As mentioned in the conclusion, the fine content will also attenuate the ultrasound.
The percentage of fines in the pulp will be the deciding factor in whether they have to
be taken into account or not. The attenuation due to fines can be predicted using a
scattering model for spherical particles such as those discussed in Chapter 4. Further
work on how such a model could be included in the method would be necessary if it were
found that fines have a significant impact on the attenuation. However, previous studies
have shown that fine concentration in pulp does not have a large impact on ultrasound
attenuation [69].
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Estimating Suspended Fibre Material Properties by
modelling Ultrasound Attenuation

Yvonne Aitoméki and Torbjorn Lofqvist

Abstract

An analytical model for use in the inverse problem of estimating material properties of
suspended fibres from ultrasonic attenuation has been developed. The ultrasound at-
tenuation is derived theoretically from the energy losses arising when a plane wave is
scattered and absorbed off an infinitely long, isotropic, viscoelastic cylinder. By neglect-
ing thermal considerations and assuming low viscosity in the suspending fluid, we can
make additional assumptions that provide us with a tractable set of equations that can
be solved analytically. The model can then be to used in inverse methods of estimating
material properties. We verify the model with experimentally obtained values of attenu-
ation for saturated Nylon fibres. The experimental results from Nylon fibres show local
peaks in the attenuation which are thought to be due to the resonant absorption at the
eigenfrequencies of the fibres. The results of the experiments show that the model is
sufficiently sensitive to detect differences in different types of Nylon. Applications for
suspended fibre characterization can be found in the paper manufacturing industry.

List of Symbols

Unless otherwise indicated subscript 1 refers to the fluid medium and subscript 2 refers to the solid
medium.

A, A, transverse vector potentials M, N transverse vector potential
ac R X k. M elastic modulus
as R X kg R radius of the fibre
Aee R X kee r , 0, cylindrical coordinates
z
Ase R X kg Vv velocity
Qes R X kes « acoustic attenuation
By, Dy, Egoefficients of expansion a, acoustic attenuation in water
Cp heat capacity in the fluid 8 thermal expansivity
c velocity of sound tand, loss tangent of the viscoelastic solid
c complex speed of sound in the sound ¢ strain
fr volume fraction of fibres I viscosity of the fluid
fll) nth order Hankel function of the first Féj Christoffel symbol

kind
Jn nth order Bessel function of the first A wavelength

kind

K heat conductivity coefficient w angular frequency
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k unit vector along the z-axis in cylin- p density
drical
co-ordinates Asy tt;  Lamé’s 1st and 2nd constants
ke wave number of the compressional v, Poisson’s ratio
wave
ks wave number of the transverse wave [ the angle between the incident wave
kee wave number of the compressional and the longitudinal axis of the cylin-
wave der
along the r-axis ¢ compressional wave scalar potential
kes wave number component of the bo incident compressional wave
compressional wave along the z-axis scalar potential
Kse wave numbers of the transverse wave ¢, reflected compressional wave
along the r-axis scalar potential
X, & transverse wave scalar potentials

1 Introduction

Our research is aimed at the on-line estimation of the characteristics of pulp fibres sus-
pended in water. An application is in the paper manufacturing industry where esti-
mating fibre characteristics can potentially improve the quality control of the finished
paper. The measurement method used is based on ultrasound as it is rapid, inexpensive,
non-destructive and non-intrusive.

The focus of our investigation is on establishing the material properties of the sus-
pended, fluid-saturated fibres from ultrasonic attenuation measurements. To do this we
need to solve the inverse problem of deriving these properties from the attenuation. We
therefore require a model that relates attenuation to material properties and one that is
analytical since this is more amenable than numerical solutions for solving the inverse
problem. Habeger established a model related attenuation to material properties, where
the equations are solved numerically [1]. We have developed an analytical solution based
on the same equations.

Habeger’s model is a cylindrical extension of the Epstein-Carhart [2]/Allegra-Hawley
[3] model. In the calculation of attenuation, the set of equations are solved numerically
and are based on a number of different material properties. By neglecting thermal effects
and assuming low viscosity in the suspending fluid, we can make additional assumptions
that provide us with a more tractable set of equations that can then be solved analytically.

In this paper we describe the simplified model used to relate the attenuation to the
material properties of the fluid saturated fibres. We compare the analytical solution with
that obtained by a numerical solution of the non-simplified equation system [1], to verify
the validity of the additional assumptions that are made. We then verify the model with
experimentally obtained values of attenuation for saturated Nylon fibres. We go on to
discuss the results, draw conclusions and outline the next steps in our investigations.
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2 Theory

The attenuation is derived from calculating the energy losses arising when a plane wave
is incident upon an infinitely long, straight cylinder. The cylinder material is assumed
to be isotropic and viscoelastic. The energy losses taken into account are from the wave
being partially reflected, partially transmitted at the solid/fluid interface and from the
generation of damped, transverse waves in the solid medium at the boundary. The highly
damped thermal skin layer, that is generated by the acoustically induced pulsations of
the solid is shown by [1] to have the greatest effect where the thermal wavelength is of
the order of the radius. We, therefore, consider frequencies above this region and hence
the thermal effects are neglected in the derivation of attenuation. The advantage is that
the thermal material properties of the fibre and fluid can then be neglected, reducing
the number of material properties in the solution and hence increasing the feasibility of
estimating the remaining material properties from attenuation measurements. A viscous
wave in the fluid (as defined by [2]) is also generated but again this is highly damped
and is neglected in the final stages of the derivation.

Expressions for the wave potentials from the conservation of mass, energy and mo-
mentum were derived by [2] and are expressed for the fluid as:

V-A, = 0 (1)
Vi, = — ko (2)
VxVxA, = KA, (3)
V, = — V¢, +VxA, (4)

where, k., = w/c, and kg, = \/iwp, /.
In the solid, the displacement potentials are used instead of the velocity potentials.
Hence,

V-A, = 0 (5)
Ve, = — ko0, (6)
VxVxA, = kLA, (7)
V, = iw(Vée, —V x A,) (8)

where k., = w/(c,(1 — itand,/2)) and ks, = \/iwp,/ .. Further details of the definition
for the wave number in a viscoelastic solid and the complex shear modulus, u,, are
described in the Appendix.

The stress tensor can be expressed in terms of the wave potentials:

T = M (K5, — 2K2)@e,] 05 + 2miéi5 (9)
Tijz = [(wzpz — 2/,62]{7(2:2)(2302} 5” + 2/1/261'3' (10)
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Where the strain is
1

The fluid wave potential is divided into an incident part and a reflected part, ¢, =
@0, + &r,. The incident plane wave potential, ¢,,, is expressed in cylindrical coordinates
and we let this equal e/(Fee1™+hes12=w) aq ip [1].

Since the plane of the cylinder lies at an angle 1 to the incident wave, the wave
numbers are expressed in terms of their components along the cylindrical coordinate
axes.

keey = ke, cos(y) (12)
kes, = ke sin(e) (13)
The inicident wave potential is expanded using Bessel functions of the first kind [4] as
by = (Jo(kzcclr) +2) i cos nGJn(kcclr)) ¢ihes =) (14)
n=1

And the reflected wave potential in the fluid expanded using Hankel functions of the first
kind:

¢r, = (Bm H(gl)(kcclr) +2 Z 1" cos n@BmeLl)(kcclr)> gilkesy z=wt) (15)
n=1

The combination of the equations (14) and (15) give us an expression for ¢,, expanded

in terms of Bessel and Hankel functions. To meet the boundary conditions for all values

of z and ¢, the time and z dependence of the potentials must be the same as ¢,,. The

equivalent expression for the compressional wave potential in the solid is

by = <B02 Jo(Keeyr) + 2 Z i" cosnf By, Jn(km2r)> gilkesy 2—wt) (16)

n=1

where, ke, = /(k2, — k2,)).

To meet the boundary conditions in cylindrical coordinates, the transverse potential
can be expanded in terms of two independent scalar potentials, see [5] such that, M =
V x xk, N =V x V x ¢k and A = M + N. Where y and ¢ are solutions to the scalar
Helmholtz equation so, V?x = —kZ x and V3¢ = —k2 €. The energy dissipated by the
transverse waves in the fluid are however very small when the viscosity is low hence these
are neglected. Expanding the transverse waves in solid in terms of Bessel and Hankel

functions we get

S

= 0cosnf ; w
(DofJo(kmr)MZz” 5 Dm(fn(kmr)> elfenz=etl (17)

n=1

ikes, X2 = (EO2 Jo(kse,m) + 2 Z i" cosndkE,, Jn(kSCQT)) g (hes 2=wt) (18)

n=1
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where, kg, = \/kZ, — K2,

The boundary conditions are that the velocity along the surface normal and the
stresses in all directions are continuous at the solid-fluid interface. Soatr = R,, V;, = V,,,
Trry = Trrgy Trey = Troy a0d Ty, = Ty, Since we neglect the velocity of the viscous wave
in the fluid we do not consider the boundary conditions of continuous velocity at the
solid/fluid interface in the § and z directions. The boundary conditions are expressed in
terms of the potentials using (4), (8) and (9)-(11) and then expanded according to (14)-
(18). The angular dependencies of the functions are orthogonal so the coefficients can be
determined by applying the boundary condition to each order of expansion separately.

For n # 0,

ey I (eey) + Bry ey HYY' (e, )
= —iw [ana602 J’:L(G‘CCZ) = By Qses Jvll(asw) + n2Dn2Jn(a562)] (19)

771{[(&31 - 2“?;] )In(@ee,) — 2a? J”(acm )] + By, [(ail - 2a§] )Hrgl)(acm) —2a;, H<1)”(a661 )]}

ccrYn ccy n

= N2{Bn2[(agz - Qaiz)ln(acw) — 2a? J//(accz)] + 2Dnzn2[ln(a502) = Qsey J’:L((’LSUQ)]

cca¥n

+2E,,a2,, ! (as,)}  (20)

n2%sco’n

nl{acm Jr/z(acm) = Jn(@ee;) + By [ace, Hr(zl)/(acm) - HT(LI)(QCC])}}
1
= MZ{BTLQ [aCC2JT/l(aCC2) - Jn(accz)} + §Dn2 [nz‘]n(aSCQ) — Qscy Jrlz(asc2) + ach Jrlzl(as@)]

+ By [Jn(@se;,) — G’SCZ‘];‘L(G’SCQ)]} (21)

U {zacm (e, J:L(acm) + ey B, HT(LI)/(CLCCI )]}

(a2 g

sco csl) } (22)

Qesy

= 112{ 205, Acey By I} (aeey) + Dy acs, Ju(Gsey) + Epyisey ) (asey)

For n =0, D,, is only present (21) hence the solution in this case is that D,, = 0. Hence
for n = 0 there are 3 equations and 3 unknowns and for n # 0 there are 4 equations and
4 unknowns. The expression for the coefficients B, , Bn,, Dn,, En, was then found for
n =0 and n # 0 using Maple (©),Maplesoft, Waterloo, Canada.

This gives us the solution to the conservation equations. The subsequent derivation
of the loss in energy due to the the scattering and absorption by the cylinder follows that
of [1]. The resulting expression for the attenuation, « is:

_ 72fr
T TRk,

R </§ cos(¢)(Bo, + 2By, + 2821)(11/)) (23)
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Figure 1: test

Figure 2: Attenuation as a function of frequency for different fibres. The attenuation is ex-
pressed in nepers per meter (Np/m),where neper (Np) is a dimensionless unit [6]. n, =
9.4 x 107* Nsm™2, p, = 996 kgm=3, ¢, = 1490ms™!, K, = 0.59 Wm 'K~! C, = 4.14 x
103 Jkg 'K~Y, B, = 2.36 x 1072 K~1. The parameter values for the fibres are shown in ta-
ble 2

Rayon Nylon Polyester
R (m) 13 x107% 30 x107% 13 x10°°
tand, 0.125 0.2 0.1
Uy 0.3 0.4 0.4
o (kgm=3) 1400 1140 1340
cy(ms™h) 1090 1340 5860
K,(Wm™'K~!) 0.15 0.36 0.038
Cpy(Jkg™'K™1) 1.5 x10°  1.42 x10* 1.02 x103
Bo(K™) 36x10™°  6x107°  1.7x107°

Table 2: Parameter values of the different fibres used in the numerical and analytical models

Note that in the insertion of asymptotic values for the Bessel and Hankel function as
r — oo, Habeger’s [1] expression appears to be missing a factor of 2. The attenuation is
the sum to infinity of a series of B,,, where n is an integer. However, when calculating the
attenuation, the energy associated with the the higher order was assumed to be negligible
and the series was truncated at n = 2. The attenuation calculated does not take into
account the attenuation of the compressional wave through the water itself. This is,
therefore, added to the attenuation of the fibres calculated above and is assumed to be
a1 = 25 x 1071 f2 taken from [6], where f is the frequency.

The effects of the additional assumptions that were made to derive the analytical
model can be assessed by comparing the attenuation predicted by the analytical solu-
tion presented here and the numerical solution presented by [1]. These assumptions are
that the acoustic attenuation from thermal processes are negligible and that the viscous
wave generated in the fluid is also negligible. The results of the differences between the
predicted attenuation are shown in figure 2 for three different types of polymer fibres:
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Rayon, Nylon and Polyester. In general the discrepancy in the results is proportional to
the attenuation. The two curves for each fibre have a similar shapes, with the excep-
tion of Polyester at low frequencies. This exception is not further examined here. The
effect the assumptions have depends on the frequency range and radius used as well as
the fluid properties and the thermal properties of the fibre. In the cases examined here,
the discrepancies are not large, although the effect these errors have on the parameter
estimation needs to be assessed when the model is used in solving the inverse problem.

We have, therefore, a simplified expression for « that can be used in solving the
inverse problem. It is a function of the material properties of the saturated fibre and the
suspending fluid, the radius of the fibre and fibre volume fraction. The next step is then
to verify the model with experimentally obtained values of attenuation from suspension
of fibre with known material properties and uniform radius.

3 Experimental

The experimental setup consists of a broadband transducer with a centre frequency of
10 MHz (V311), manufactured by Panametrics, Waltham, MA, USA. A pulser/receiver
5072PR from Panametrics was used to excite the transducer and amplify the received
signal. The signal was then digitized using a CompuScope 14100 oscilloscope card, by
Gage Applied Technologies Inc., Lachine, QC, Canada, with 14-bit resolution and a
sampling rate of 100 MHz. All data was stored in a computer for off-line analysis.
The resulting time-domain waveforms were calculated using the average of 100 sampled
waveforms to reduce random noise. Before the averaging, the sampled waveforms are
aligned to reduce timing jitter by using a method proposed by [7]. A digital thermometer
F250, by Automatic Systems Laboratories LTD, England, monitored the temperature
both in the suspension under test and in the room. The temperature was used to calculate
the speed of sound in the water [8]. The fibre suspension was carefully poured into the
measurement cell and then stirred until the majority of the air bubbles were removed.
The measurement cell is described in detail in [9]. The attenuation of the sample was
calculated according to [10].

The fibre suspension was made of Nylon fishing line, (STROFT™ GTM) with a nom-
inal diameter of 60 um,! chopped to a length of approximately 4 mm. The Nylon was a
polyamide copolymer tempered to improve its tensile strength. The fibres were weighed
and mixed with water to a concentration of 0.5% by weight. They were then left in water
for 3 days to stabilise the temperature and to allow the fibres to become fully saturated.
To prevent the fibres from settling during the test the suspension was stirred gently. A
set of 30 runs were taken each with an average of 100 pulses.

Permissbile diameter fluctuation +1 ym, Permissible norminal size deviation 438 ym



90 PAPER A

4= 2STD

90 - ~Nylon 6 R 181 —— Average Normalised Attenuation| ]
—e—Nylon 6,6
801 —— Experimental Data q 161
c
— 70} S 14}
E g
8 <ot
ﬁ Q
3 2
2 2 08t
2 £
< S 06f

o o
N s

=)

12 14

12 14 2 4 6 8 10
Frequency (MHz)

6 8 10
Frequency (MHz)

Figure 3: test

Figure 4: Attenuation as a function of frequency for a suspension of Nylon fibres in water
at 0.5% concentration. Modelled and experimental attenuation values. Parameters for the
saturated fibres are in shown in table 3. Right-hand figure is the Average of the Attenuation
normalised by the value of the attenuation at 5SMHz to remove the variance directly proportional
to the attenuation.

4 Results

Figure 4 show the results from the 0.5% concentration of suspended Nylon fibres. As we
can see there is a large variation in the level of attenuation although the shape of the
curve is similar in all the measurement with local peaks in the attenuation at 4.8 MHz
and at 7.7 MHz.

In the right-hand figure 4, the attenuation has been normalised by the value of the
attenuation at 5MHz to remove the effect of variance directly proportional to the atten-
uation. Attenuation proportional variance is thought to be due to the inherent inho-
mogeneity of the suspension as the attenuation is proportional to the volume fraction.
The fibres form flocs and through a combination of stirring and settling each time an
ultrasonic pulse is emitted it travels through a different arrangement of fibres resulting in
a different volume concentration and hence a different attenuation. The remaining vari-
ance, shown in the normalised attenuation graph increases with increasing attenuation
and this is thought to be due to an decrease in the signal to noise ratio at the higher
levels of attenuation found at higher frequencies.

The modelled attenuation is plotted in figure 4 with two possible set of parameters
which are listed in table 3. The material properties are however, difficult to establish.
The density was taken from the manufacturer data sheet, and adjusted for 5% water
absorption. The speed of sound in Nylon 6 was taken from Habeger [1], whereas for
Nylon 6,6 although the rod velocity was taken from his measurements in saturated fibres,
Poisson’s ratio in Nylon 6,6 was taken as 0.39 [11]. This means the speed of sound in
Nylon 6,6 was calculated as 2345 ms™!. Poisson’s ratio for Nylon 6 was taken as the value
that gave the best fit in Habeger [1] experiments. The exact value of the loss tangent was
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Nylon 6 Nylon 6,6
R (pm) 46.8+ 04 46.8+04
-1

c,(ms™) 1340 2345
pa(kgm=3) 1131 1131
Uy 0.3 0.39
tan 4, 0.2 0.15

Table 8: Parameter values used for Nylon

adjusted to best fit the experimental data as it can vary from very low, 0.01, in lightly
crossed amorphous polymer to 3 depending on the molecular structure [12].

As the plots show, neither Nylon 6 or Nylon 6,6 fits the whole range. Nylon 6, gives a
good fit for the low frequencies and Nylon 6,6 for the higher frequencies. The wide margin
of error in the elastic constants and hence the speed of sound and the fact that the Nylon
used was a polyamide copolymer, tempered to improve its tensile strength, could explain
some of the discrepancies between the model results and the experimental results. Other
explanations are that the values of the material parameters are not constant across the
frequency range we are examining or that some of the fibres are not freely suspended but
interact with one another which results in unpredictable ultrasonic attenuation. Multiple
scattering would also cause differences between predicted and experimental results.

The peaks are thought to correspond to the resonant absorption at the eigenfrequen-
cies of the cylinder, possibly of the shear wave, as opposed to reflections of internal waves
from the ends of the fibres. This is because the peaks appear in both the experimental
and the modelled values of attenuation and the modelled values are based on cylinders
of infinite length.

5 Conclusions

In conclusion, we have established an analytical model relating the attenuation of ul-
trasound, in a suspension of fibres in a low viscosity fluid, to the material properties of
the fibres. This model is amenable for use in solving the inverse problem of determining
material properties of saturated fibres from measurements of attenuation. The results of
the experiments indicate that the Nylon tested, a polyamide copolymer, has properties
between that of Nylon 6 and Nylon 6,6. The material properties of saturated fibres are
difficult to assess and hence have large margin of error. The results suggests that the
model is sufficiently sensitive to material properties to detect differences in different types
of Nylon.

The additional assumptions made that allow the analytical solution to be derived
causes some discrepancies in the calculation of attenuation. However, the large variations
in attenuation thought to be due to the inherent inhomogeneity, is likely to mask these
differences.
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6 Further Work

The elastic properties of the saturated Nylon fibres need to be investigated with an
alternative method to verify that they do indeed lie between that of Nylon 6 and Ny-
lon 6,6. Investigations at different concentrations need to be carried out to test if the
inhomogeneity of the attenuation is the cause of the attenuation proportional variation.

Further work needs to be done to establish the cause of the local peaks in the frequency
response of the attenuation. By testing other materials and different diameters of fibres
the accuracy of the model can be assessed further.

The next step is then to use this model in solving the inverse problem in suspensions
of greater complexity such as paper pulp where online data on the material properties
of wood fibre in suspension is required. For this, a method for optimising the fitting
of the modelled attenuation to the experimental values needs to be developed. The
effects of non-uniform diameters and anisotropic nature of the pulp fibres also need to
be assessed.

A Appendix

Here, we have defined the elastic modulus involved in the vibratory motion as complex and equal to:
M,(w) = M, —iM}, where M,(w)=\(w) + 2u.(w) (A.24)

tan d, is then defined as the phase difference between the real and imaginary part of the elastic modulus:

My

tané A.25
an g, iR (A.25)
Denoting the compressional speed of sound in the solid as complex where ¢, = ¢, — icl we get
M} M tan o.
0;2 _ C;/Z =2 26’20/2' _ M an 0, (A.Qﬁ)
P2 P2
As tand, is small at the limit tand — 0, which is the equivalent of assuming ¢, > ¢ we get,
tané
c, ~ c <1 —1 a121 2) (A.27)

With the additional assumption that &, > k{/, we get the same expression as derived by [13]. For ease
of readability in the main text, the prime that distinguishes the real from the imaginary part has been
dropped. So, in the main text, ¢, = c.

11, can be expression in terms of Poisson’s ratio, v, and the complex speed of sound using (A.24)
and (A.27), if we assume that Poisson’s ratio is real at these frequencies.

- <Oi571)2>c’2p2(17itan52) (A.28)
—
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Ultrasonic Measurements and Modelling of
Attenuation and Phase Velocity in Pulp Suspensions

Jan Niemi, Yvonne Aitoméki and Torbjorn Lofqvist

Abstract

In the manufacturing process of paper the mass fraction and material properties of the
fibres in the pulp suspension are important for the quality of the finished product. This
study presents two different methods of pulp characterisation. The first is based on
phase velocity, which we use to investigate the composition of the pulp. Here a method
is presented where the optimal number of circular shifts within the sampling window
of the signal is determined which gives, in a weakly dispersive medium, a continuous
phase spectrum and minimizes the likelihood of discontinuities within the bandwidth.
Hence, the ambiguity in phase unwrapping is avoided. The results from phase velocity
measurements show that the phase velocity weakly increases with increasing amount of
fines in the suspension. The dispersion is caused by the fibres and it correlates with fibre
mass fraction. The second method is based on attenuation and is used to characterise
the wood fibres. The results of the attenuation experiments show that it is possible to
inversely calculate wood fibre properties by fitting the model to the experimental data,
if the fibre diameter distribution is known. However, the accuracy of these calculation is
difficult to determined and more work in this area is required.

1 Introduction

In the manufacturing process of paper the mass fraction and material properties of the
fibres in the pulp suspension are important for the quality of the finished product. When
using recycled paper, fibres with unknown and varying material properties enter the
process. Therefore, there is an increasing demand for methods of on-line characterisation
of the pulp suspension as well as the fibres in suspension.

This study presents two different methods of pulp characterisation. The first is based
on phase velocity, which we use to investigate the composition of the pulp. The second
is based on attenuation and is used to characterise the wood fibres.

In the first method, we investigate how the phase velocity changes with different mass
fractions of fibres and fines. To determine the phase velocity, a method is proposed based
on a method by [1], where the an echo is circularly shifted an optimal number of samples.

In the second method, to be able to characterise the wood fibres, we use an analytical
model which relates the material properties of saturated fibres to the attenuation. We
then aim to solve the inverse problem of identifying which values result in the best fit of
the model to the attenuation values calculated from experiments.
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Figure 1: Lattice diagram of the pulse-echo measurement system used this study

2 Phase Velocity

2.1 Theory and experiments

When determining the phase velocity from pulse-echo measurements, one encounters the
problem of performing a correct phase unwrapping. The problem is well known and
has been addressed in earlier investigations, for instance [2]. The problem arises when
the phase velocity is calculated from the phase spectra of a the Fourier transform of
each of the two echoes. In this study, we propose a method, termed Minimum Phase
Angle (MPA), that determines an optimal number of circular shifts to the windowed
signal which results in a continuous phase spectrum and minimizes the likelihood of
discontinuities within the bandwidth. Therefore the ambiguity in the phase unwrapping
is avoided. To experimentally test the method experiments were performed in pulp
fibre suspensions, which are weakly dispersive. The experiments were carried out using
the pulse-echo technique in a custom designed test cell. A schematical view of the
measurement cell used in this study is shown in Fig. 1.

The echoes from the interfaces depend on the initial pulse pressure amplitude po(¢)
emitted from the transducer and the reflection and transmission coefficients of the differ-
ent interfaces. For simplicity, we omit the reflection and transmission coefficients and the
attenuation. With these assumptions, the echoes from the interfaces between the buffer
rod/suspension and suspension/steel reflector are

Piw) = Row)e 5" = Ryw)e o) M

. d d .
Pyw) = Py(w)e PETE) = Ryw)e o) (2)

where P;(w) and Py(w) are the Fourier transform of the echoes p;(t) and po(t), re-
spectively. d; and dy are the distance in respective medium. The factor 2 above comes
from that the fact the pulse is travelling back and forth through the medium. ¢; and ¢
are the velocities in the buffer rod and pulp suspension, respectively. Py(w) is the Fourier
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transform of the initial emitted pulse from the transducer. Note that echo p;(¢) has an
extra phase shift of 7 compared to po(t).

2.2 The method of minimum phase angle

To reduce the ambiguity in the phase unwrapping the following method is proposed.

=0 _________ L ______

Figure 2: The received signal with illustrations of the time delays and time shifts

The sampled signal is divided into two sampling windows with time delays t; = ng/ fs
shown in Fig. 2 where ny is the number of samples that the sampling window is delayed
and f; is the sampling frequency. Within each sampling window the signal is circularly
shifted sample by sample. At each shift, a calculation of the phase angle is carried out
as

B 1 f2 ,
Pa- g3 ®)

where ¢, is the phase spectrum within the frequency bandwidth of f; < m < f
of the shifted sample. Thereafter a sign shift of the echo is carried out, representing
a phase shift of 7w, and again circularly shifted and calculated with the same method.
The results are compared and the circularly shifted sample that gives a phase spectrum
without discontinuities and minimum value of PA is then chosen. The outcome is then
the optimal time shift of t; = ns/fs where ns is the number of samples the signal is
shifted.

This results in two time delays, the time delay from the sampling window and time
delay from the circular shift within the window. This gives the phase spectrum for the
respective echoes as

p1(w) = g(w) +w(ta +ts) (4)
pa(w) = ¢a(w) + w(tax +ts2) (5)
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where ¢; and ¢ are the respective phase spectra of the circularly shifted signal. 4
and tg are the time delay for respective sampling window. ¢, and tg are the circular
shift within respective sampling window. An illustration of how PA changes when echo
p1(t) is circularly shifted within the sampling window is shown in Fig. 3. In this example,
the minimum of PA is found when p;(¢) is shifted 100 samples to the left and inverted.
Fig.2.3(c) shows the phase spectrum at the minimum of PA for p;(¢) and —p;(t). We
can see that the inverted signal has a phase spectrum with the minimum likelihood of a
discontinuity being present in the spectrum.

The phase velocity for a pulp suspension sample can be expressed using (1)-(2) and
(4)-(5) as

- w2d2
Wty —t) +0(w) — Og(w) +mm

(6)

where t; =ty +ts1, ta = tas +ts2, O(w) = da(w) — ¢1(w), da(w) is the phase difference due
to diffraction [3] and m is a correction term if a phase shift of 7 is added by the proposed
method. In this study m = 0 if the proposed method inverts p; (¢) to compensate for the
extra phase shift that occurred, m = 1 if pi(¢) and ps(t) are not inverted and m = —1 if
both p1(t) and po(¢) are inverted.

c2(w)

2.3 Experiment

The experimental setup consists of a broadband transducer with a centre frequency of
10MHz (V311), manufactured by Panametrics, Waltham, MA, USA. A pulser/receiver
5072PR from Panametrics was used to excite the transducer and amplify the received sig-
nal. The signal was then digitized using a CompuScope 14100 oscilloscope card, by Gage
Applied Technologies Inc., Lachine, QC Canada, with 14-bit resolution and a sampling
rate of 100 MHz. All data was stored in a computer for off-line analysis. The resulting
time-domain waveforms were calculated off-line using the average of 100 sampled wave-
forms to reduce random noise. Before the averaging process, the sampled waveforms
are aligned to reduce timing jitter by employing a method proposed by [4]. A digital
thermometer F250, by Automatic Systems Laboratories LTD, England, monitored the
temperature both in the suspension under test and in the room. The temperature in
the pulp suspensions under test was 20.0 & 0.2°C. The pulp suspensions was carefully
poured into the measurement cell and thereafter stirred slowly to remove air bubbles
from the suspension. An illustration of the measurement cell is shown in Fig. 1 and
is described in detail in [5]. To accurately determine the distance ds in the cell, pure,
distilled water was used as a reference since it has a well known relationship between
speed of sound and temperature, see [6]. Using the temperature of the calibration fluid
and a cross-correlation technique to determine the time-of-flight for an ultrasonic pulse,
the distance dy was found to be 0.03010+ 0.00004 m.

The pulp samples used in this study were produced from thermo-mechanical pulp
(TMP). The TMP was fractionated by Bauer-McNett fractionator according to SCAN-
standard 6:69 [7]. This process separated the pulp into two fractions; a fibre fraction
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inverted. (c) shows the phase spectrum of p1(t) and —p1(t) when the echoes are shifted 93 and
100 samples respectively, i.e at respective minimum of pa
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Figure 4: Phase velocity in pulp suspension containing fines and no fibres

and a fines fraction. The fibre fraction consists of fibres that passed the 48 wire mesh,
resulting in fibre lengths that vary between 1-3 mm and diameter of 20-50 pm. The fines
were obtained by passing the pulp through the 200 wire mesh and then subsequently
filtered through 400 wire mesh. They have a length of 30-74 ym and a diameter of a few
pm. Both the fines and fibre size distributions were analyzed using a Kajaani Fiberlab
instrument, Metso Corporation, Finland. From these fractions, a set of samples were
made by mixing fibres and fines at predetermined ratios between 0-1.0% by mass.

2.4 Results

The results from the phase velocity measurement for suspensions containing only fines
is shown in Fig.4. The figure shows that the velocity dispersion is small within the
bandwidth of the ultrasonic pulse, 1.8-10 MHz, and that the phase velocity increases
with increasing amount of fines in the suspension.The uncertainty in the measurement is
+0.3 m/s based on +2 standard deviations.

Fig. 5, shows measurements of phase velocity for samples where the mass faction of
fibres are the same as for fines. In this case, the velocity dispersion is noticeable and it
is seen to correlate well with mass fraction, giving higher velocity dispersion with higher
mass fraction. As an example, the velocity for 1.0% mass fraction changes from the
lowest, below 4 MHz to be the highest above.

3 Attenuation

3.1 Theory

The model is based on calculating the energy loss in the scatter wave from an infinitely
long, viscoelastic, isotropic, cylindrical fibre. It is described in full in [8]. In [8], the
modelled attenuation agrees well with experimental results of synthetic fibres such as
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nylon and shows localised extrema in the frequency response of attenuation. These peaks
in frequency response of the attenuation are thought to be at the vibrational modes of
the fibres. Although the locations of these peaks depend largely on the diameter of the
saturated fibres, they also depend on their material properties.

In nylon, the locations of the peaks are more repeatable and hence more reliable than
the measurement of the attenuation itself which varies due to the inhomogeneous nature
of the suspension. The repeatability of the frequency at which these peaks occur and
the fact that changes in diameter, Poisson’s Ratio, Young’s Modulus and the density of
the fibre produce different effects on the shape of the modelled frequency response of the
attenuation, means that the suspension can be better characterised if these extrema can
be located.

The aim is, therefore, to determine if localised extrema also exist in the frequency
response of the attenuation of wood fibres. This would allow us to solve the inverse
problem with less ambiguity than attempting to solve the inverse problem from a simple
curve.

The model shows the attenuation in the frequency range 1Mhz to 25 MHz to be very
sensitive to fibre diameter. Using an average fibre diameter of 40 pm localised maxima in
attenuation were predicted to be between 5 MHz to 10 MHz. However, the wood fibres in
paper pulp have different diameters hence the diameter distribution of the wood samples
is required to produce expected attenuation.

3.2 Experiment

The same measurement cell and paper pulp samples were used as in the phase velocity
experiments. As the diameter of wood fibres are smaller than nylon the peaks are ex-
pected to appear at a higher frequency. Hence a 30 MHz transducer (Panametric V333)
was used and the signal digitised by a CompuScope 102G oscilloscope card (Gage Ap-
plied Technologies, Inc Lachine QC Canada) with a 10-bit resolution and a sample rate



104 PAPER B

Attenuation (Np/m)
»
5

Modelled results
Average Attenuation (Expt)|
2*Std of Mean

2 4“ é é 1‘0 1é 1‘4 1‘6 1‘8 20

Frequency (MHz)
Figure 6: Comparison of the modelled attenuation to the measured attenuation for 0.5% concen-
tration of wood fibres. Plot of the mean and 2x STD of the mean for 300 readings. The following
material properties for saturated wood fibres were used in the model: density=1500 kg/m?, Pois-

son ratio = 0.45, speed of sound= 1050 m/s and loss tangent=0.2. The properties of water were
assumed to be: density=996 kg/m?, speed of sound=1490 m/s, and viscosity=9.4 - 10~*Pa - s

of 2GHz. The distance the signal travelled was calculated using the method previously
described. Since the initial echo from the buffer rod could not be easily identified, the
attenuation in the sample was obtained using pure, distilled water as reference giving,

IPw(f)I)
[ P(f)]

where «y is the attenuation in the sample, ds is the distance travelled by the signal,
P(f) is the amplitude in the frequency domain of the second echo in the sample and
P,(f) is the amplitude in the frequency domain of the second echo in water. «,,(f) is
the attenuation of water [9] and is assumed to be

) . 1
wlf) = aw(f)+2d21n( ™)

au(f) = 25-1071%f2 (8)

3.3 Results

Figure 6 is a comparison of the experimentally calculated average attenuation and the
modelled attenuation. Good agreement has been obtained by adjusting the saturated
wood fibre properties. The maximum at 2.2 MHz in the experimental results is not
reflected in the model results though a small maximum does exists at 2.4 MHz and a
slightly large one at 3.2 MHz, corresponding to fibres with diameters of 60 ym and 40pm
respectively. This lack of agreement could be because the model is for a fibre that is
continuous over its cross section. As wood fibres are hollow the vibrational modes, which
are believed to be causing the maxima, will not occur at the frequencies predicted by the
model. However, it may also be due differences between the distribution of the diameters
in this particular sample and that used in the size analysis. The peak could also be an
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experimental artifact. The sensitivity of the modelled attenuation on the fibre diameter,
means the distribution of the diameters is the dominant factor in determining the material
properties of the suspended fibres. With unknown fibre diameter distributions, there
is a greater possibility of determining the diameters of the fibres if the local extrema
in the frequency response of the attenuation are clear. However, the superposition of
maxima and minima of one wood fibre diameter with other fibres of a different diameters
results in a the smoothing of the signal, masking the effects of the individual fibres. The
featurelessness of the curve means that the calculation of the material properties from
the experimental measured attenuation is ambiguous. Combinations of different values
can give similar results.

4 Conclusion

In this study we have considered measurements of phase velocity and attenuation in pulp
suspensions. The proposed method to calculate phase velocity avoids the ambiguity with
phase unwrapping if the medium is weakly dispersive. The result shows that the phase
velocity increases with increasing amount of fines in the suspension. The dispersion is
caused by the fibres and it correlates with fibre mass fraction.

The results of the attenuation experiments show that it is possible to inversely cal-
culate wood fibre properties by fitting the model to the experimental data, if the fibre
diameter distribution is known. However, the accuracy of these calculation is difficult to
determined and more work in this area is required.

5 Further Work

The proposed minimum phase angle, or MPA, method has to be tested in cases when
the phase velocity is highly dispersive.

The peak in the experimental results of the frequency response of attenuation at
2.2 MHz needs further investigation. Experiments on synthetic fibres are being carried
out to explore the effect of hollow compared to solid fibres. If these effects are significant,
further development of the model is required to take this into account.
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Sounding out Paper Pulp: Ultrasound Spectroscopy
of Dilute Viscoelastic Fibre Suspensions

Yvonne Aitoméki and Torbjorn Lofqvist

Abstract

A model of attenuation of ultrasound in fibre suspensions is compared to a model
of backscattering pressure from submersed cylinders subjected to a sound wave. This
analysis is carried out in the region where the wavelength is of the same order as that of
the diameter of the fibre. In addition we assume the cylinder scatterer to have no intrinsic
attenuation and the longitudinal axis of the scatterer is assumed to be perpendicular to
the direction of propagation of the incident wave. Peaks in the frequency response of both
the backscattering pressure, expressed in the form of a form function, and the attenuation
are shown to correspond. Similarities between the models are discussed. Since the peaks
in the form function are due to resonance of the cylinder, we infer that the peaks in
the attenuation are also due to resonance. The exact nature of the waves causing the
resonance are still unclear however the first resonance peaks are related to the shear
wave and hence the shear modulus of the material. The aim is to use the attenuation
model for solving the inverse problem of calculating paper pulp material properties from
attenuation measurements. The implications of these findings for paper pulp property
estimation is that the supporting fluid could, if possible, be matched to density of that of
pulp fibres and that the estimation of material properties should be improved by selecting
a frequency range that in the region of the first resonance peaks.

1 Introduction

This study is part of a project aimed at the on-line characterisation of pulp fibres sus-
pended in water, as used in the paper manufacturing industry. An analytical model was
developed to relate ultrasound attenuation to the material properties of the fibre and the
supporting fluid. This model was presented in [1]. This has then been used this to solve
the inverse problem of estimating material properties from measurements of ultrasonic
attenuation in dilute suspensions of viscoelastic fibres [2].

Experiments from these studies showed local peaks in the frequency response of the
attenuation [1,2]. The focus of the study is on the cause of these peaks. A large body
of work exists on attenuation due to suspended spherical particles, as reviewed in [3].
However, for cylindrical scatterers, much of the work has been based on backscattering
and in the regime where the ratio of the wavelength to the diameter of the scatterer is
small [4-9]. One of the theories arising from these works is the Resonance Scattering
Theory (RST) [5]. This study compares the backscattering from theory developed for a
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submersed cylinder [10] to a model of ultrasonic attenuation in a suspension of fibres in
a fluid [1]. The theory developed by [10] is essentially the same as the nuclear scattering
theory introduced in the derivation of the RST theory [5]. In this study we will use the
rewritten version of [10] found in [11] since this matches the propagation direction of the
wave used in the attenuation model.

Once a comparison of the resonance peaks is made, the explanation for the peaks in
the backscattering is investigated to see if it is valid for the peaks found in the attenuation.

2 Theory

The attenuation is calculated from the simple cylinder scattering, (SCS), model [1]. The
derivation of this model follows Habeger [12] cylindrical extension of the Epstein and
Carhart [13]/Allegra Hawley [14] model. The resulting expression for the attenuation, «,
of a suspension of fibres in a fluid of low viscosity, such as water is

72fr % 2
a= 7TR2]€§R (/0 (ean)cos(1/1)d1/J> , (1)

where f,. is the volume fraction; R is the radius of the fibre; k is the wave number of

the wave in water; ¥ is the angle of the fibre to the direction of the oncoming plane
ultrasound wave; €, = 1, if n = 0, otherwise ¢, = 2, and n is a positive integer. B, are
the n* expansion coefficients of the wave potential of the reflected wave. The coefficients,
B, are a function of the fluid properties: viscosity, density and speed of the compression
wave and the fibre properties: shear modulus, density, loss tangent and speed of both
the compression and the shear wave. The speed of the shear wave is a function of the
shear modulus and the density and is related to the compression wave speed by Poisson’s
ratio.

For the purpose of the comparison between the attenuation and backscattering we
assume that the axial plane of the fibres is perpendicular to the direction of propagation
of the wave. Since we are focusing on the frequency at which the peaks occur we also
assume that there is no intrinsic attenuation in the cylinder. This is done by setting the
loss tangent to zero.

The expression for backscattering pressure from a cylinder at a large distance from

the cylinder is
2a .,
Py e foo(m) (2)

where P is the scattering pressure; a is the size of the scatterer and in this case equals
R; r is the distance to the scatterer centre, k is the wave number of the wave in the fluid
and f. () is the form function [5,10].

The form function can be expressed using a phase shift expression, where the phase
shift is that between the incident and reflected wave such that:

foo(m) = 2

wka

o0

(—1)"e, sin(n, e m+%) (3)
n=0

j
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where 7, is the phase shift [11] and is defined as,

tan o, (ka) + tan én(kra, kra)
tan B, (ka) + tan ¢, (kra, kra)

N, = arctan |tand,(ka)

The following functions were used in the above equation:

tan o, () = —x ﬁgi;, (5)
tan 3, (z) = —m%igg , (6)
tand, (z) = fx]{]’;((?) , (7)
tan ¢, (kpa, kra) = %
tan oy, (kpa) n?

tan oy (kra) +1 kra)?
an o ( La) + n?— % + tan Ozn(kTG)

n? — (hra)® + tan o, (k 2
) n(kra) n? - (tan ay, (kra) + 1)

tan o, (kra) + 1 ~, (kra)?
n2 — T8

+ tan o, (kra)

(®)

Here, p; is the density of the water; po is the density of the solid, kr is the wave number
of the shear wave in the solid; kj, is the wave number of the compression wave in the solid
and n is a positive integer. J, and N,, are Bessel function of the 1st kind and 2nd kind
respectively, to the order n and J/, and N, are the derivatives of the Bessel functions of
the 1st kind and 2nd kind respectively, to the order n.

The frequency range is expressed in terms of normalised frequency F,, = ka, and we
consider the range F;, from 0.2 to 5. The series expansion is truncated after eleven terms.

3 Results

The parameters in the models are set based on the material properties of Nylon 66 and
water. However, as previously stated we are focusing on the frequency at which the peaks
occur, so the loss tangent of the cylinder material is set to zero. To ease the comparison
between the peaks in both backscattering and the attenuation, the amplitude of the
attenuation is scaled and offset by 2 units. The results are presented in Figure 1.
Under these conditions there is a good match between the backscattering form func-
tion, fuo(m) and the attenuation, a. The match between these two functions has two
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Function Amplitude

Frequency (Mhz)

Figure 1: Plot of the acoustic attenuation, «, and the form function, foo(w), against normalised
frequency for nylon fibres suspended in water. To ease the comparison between the peaks in both
functions, the amplitude of the attenuation is scaled and offset by 2 units.

consequences. Firstly, the solution for the expansion coefficients used by Faran [10] can
be used in the calculation of attenuation -equation (2) -instead of the solution for the
expansion coefficient used in the attenuation. This results in a simpler solution as that
used by Faran [10] uses slip boundary conditions. We can then compare the amplitudes of
the attenuation calculated using the two different solutions for the expansion coefficients
and hence the effects of the different boundary conditions. Work on this continues.

The second consequence of the match between the form function and the attenuation
is that the resonance peaks in the form function have been well discussed, in both [10]
and [6]. Faran [10] states that the normal modes of the cylinder are found when the
normal component of the stress and the tangential component of the shear stress at the
solid boundary are zero gives a condition which is identical to setting the denominator
of Equation (8) to zero. Using this condition the normal modes can be calculated from
Equation (8). Faran [10] also discusses that a shift in the resonance frequency of an
immersed cylinder due to the reactive component of the acoustic impedance acting on
the scatterer by the surrounding fluid. Although in his study this shift was small as
the metal cylinders that were used had much greater densities than the surrounding
fluid, in our case, where the density of nylon is close to that of water, the effect will be
considerable. When calculating the normal mode for nylon, the first mode occurs at a
normalised frequency of 1.4 (R = 44 um, 7.8 MHz), however, the effect of the surrounding
fluid moves this peak to a normalised frequency of 1.0 (R = 44 ym, 5.3 MHz). The
frequency can be found by setting the denominator in equation 4 to zero. Also discussed
is the fact that the since the speed of the shear waves is much lower than the speed of
the compression wave. The first modes to appear are from the shear wave. Since the
n = 0 does not support shear waves, the frequency of this mode depends on the speed
of the wave and hence occurs at a normalised frequency of 3.57 (R = 44 um, 19.3 MHz).
These calculations are for a cylinder with no loss.
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Resonances in backscattering are explained as being caused by creeping waves in the
fluid and in the solid [6]. However, the assumption used in these explanations is that
the normalised frequency is much greater than 1, which is not the case here. Hence the
actual wave propagation modes in this region of normalised frequency are still not clear.

4 Conclusion

From the results so far it appears that the coefficient derived by Faran [10] for backscat-
tering can be used to derive attenuation. From this model, the resonance modes of a
cylinder and a cylinder in water can be obtained. They confirm that the peaks in the
attenuation curves are due to resonance. It appears as if the shear waves are causing
first peaks in the ultrasound attenuation although the exact nature of these waves has
not been established. These calculations have been done under the conditions of no loss.

The implication of these findings for the use of estimating material properties of paper
pulp from ultrasound attenuation are that, if possible, the density of the surrounding fluid
should be as close as possible to that of the suspended fibre. This increases the phase
shift in the suspension and increases the dependency of the attenuation on the material
properties of the fibre. The frequency range should also be set, if possible, so that
resonance peaks exists within the range. Since the frequencies of the peaks depend on
the material properties of the fibre, identifying these frequencies should aid in estimating
material properties.
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Inverse Estimation of Material Properties from
Ultrasound Attenuation in Fibre Suspensions

Yvonne Aitoméki and Torbjorn Lofqvist

Abstract

An investigation of a new method for measuring fibre material properties from ultrasonic
attenuation in a dilute suspension of synthetic fibres of uniform geometry is presented.
The method is based on inversely solving an ultrasound scattering and absorption model
of suspended fibres in water for the material properties of the fibres. Experimental re-
sults were obtained from three suspensions of nylon 66 fibres each with different fibre
diameters. A forward solution to the model with reference material values is compared
to experimental data to verify the model’s behaviour. Estimates of the shear and Young’s
modulus, the compressional wave velocity, Poisson’s ratio and loss tangent from nylon
66 fibres are compared to data available from other sources. Experimental data confirms
that the model successfully predicts that the resonance features in the frequency response
of the attenuation are a function of diameter. Consistent estimated values for the com-
pressional wave velocity and the Poisson’s ratio were found to be difficult to obtain but
in combination gave values of shear modulus within previously reported values and with
low sensitivity to noise. Young’s modulus was underestimated by 54% but was consistent
and had low sensitivity to noise. The underestimation is believed to be caused by the
assumption of isotropic material used in the model. Additional tests on isotropic fibre
would confirm this. Further analysis of the model sensitivity and the reasons for the
resonance features are required.

1 Introduction

The quality of paper pulp depends on a large number of factors and some of these are
the properties of the pulp fibre itself [1]. Measuring pulp fibre characteristics has there-
fore the potential to provide paper manufacturers with increased control over their pulp
production. The measurement method being investigated here is based on ultrasound, as
it is rapid, inexpensive, non-destructive and non-intrusive. Consequently, such measure-
ments could be done online. As an initial step on the way to online measurement of pulp
fibre properties, the aim of this measurement method is to provide ultrasonic based mea-
surements of the material properties of finite length, uniform fibres in suspension. Two
approaches that can be used to model ultrasound propagation in fibre suspensions are
to model it either as a solid porous media or as cylindrical scatters suspended in a fluid.
The solid porous media approach has been applied to paper pulp using Biot’s model of
the attenuation and velocity of ultrasound [2]. However, the structural and solid/fluid
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interaction parameters are many and difficult to establish. Using dilute solutions and
higher frequencies than the Biot model, scattering models can be considered. Epstein-
Carhart/Allegra-Hawley [3,4], (ECAH), model and the Harker and Temple model [5]
have been developed for spherical-like particles in suspension. A review of these and
other theories mainly based on spherical particles and their application to determining
particle size distribution is found in [6]. Studies of cylindrical particles have concentrated
on large scatterers, where the product of the wave number and the radius, kR, is large
and hence asymptotic assumptions can be made. In these studies, back-scattering rather
than attenuation is considered [7,8].

A scattering model for a suspension of fibres in water was developed by Habeger [9].
This is a cylindrical extension of the ECAH model and relates the attenuation to the
properties of water, the properties of the fibre, and the fibre concentration. In the cal-
culation of attenuation, the model equations are based on a number of different material
properties and are solved numerically. Since the model is to be used to solve the in-
verse problem, i.e. determining the material properties from attenuation measurements,
a simpler, analytical version of this model was sought which would have less unknown
parameters and would have a quicker and more stable solution. By neglecting thermal
effects and assuming low viscosity in the suspending fluid, a more tractable set of equa-
tions is reached that can be solved analytically [10]. This simplified cylinder scattering
(SCS) model is the basis for the measurement method described here.

Firstly we test the model’s forward, predictive accuracy and behaviour and secondly,
its suitability for providing inverse solutions. In the predictive part we experimentally
verify the model’s response to changes in fibre diameter given reference data for the fibre
properties. In the inverse testing, we investigate whether the SCS model can be used to
estimate material properties of fibres in suspension from the attenuation of ultrasound
across a range of frequencies.

We start by describing the SCS model and the experimental procedure used to obtain
the frequency response of attenuation of a suspension of nylon fibres in water. We
discuss the results from the predictive and inverse tests and draw conclusions about the
measurement methods as well make some suggestions for further work.

2 Theory

In the SCS model, the attenuation is calculated from the energy losses arising when a
plane wave is incident upon an infinitely long, straight cylinder. The cylinder material is
assumed to be isotropic and viscoelastic. The energy losses taken into account are from
the wave being partially reflected, partially transmitted at the solid-fluid interface and
from the generation of damped, transverse waves in the solid medium at the boundary.
The highly damped thermal skin layer, that is generated by the acoustically induced
pulsations of the solid has been shown to have the greatest effect at frequencies where
the thermal wavelength is of the order of the radius [9]. To simplified the model we
neglect these thermal effects but to reduce the impact this has on the model’s accuracy
we only consider frequencies above this thermally sensitive region. A viscous wave in the
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fluid (as defined by [3]) is also generated but due to the low viscosity, the energy loss
due to this wave is small and is also neglected. In the model the waves are expressed
in terms of the wave potentials of the incident and reflected wave in the fluid and the
compressional and shear wave potentials in the fibre. The derivation is presented in [10]
and the resulting equation for the attenuation « is

- W;;i ; R (/0 €nBn Cos(w)dd)) (1)

where f, is the volume fraction; R is the radius of the fibre; k., is the wave number of
the compressional wave in water; 3t denotes the real part of the expression, ¥ is the angle
of between the axial plane of the fibre and the direction of the oncoming ultrasound
wave; n is a positive real integer; €, = 1 if n = 0, otherwise ¢, = 2 and where B,
is the n'" expansion coefficient of the wave potential of the reflected wave. With the
assumptions stated above, the solution for the coefficients B,,, comes from using the
boundary condition of continuous velocity in the radial direction and continuous stress
in radial, tangential and axial directions at the fluid-solid interface. The actual expression
for B, is solved analytically using Maple® (Maplesoft, Waterloo, Canada). The result is
an expression for B, as a function of the fluid properties: viscosity, v, density, p; and
velocity of the compressional wave, ¢; and the fibre properties: radius, R, density, po,
velocity of the compressional wave, ¢y, shear wave, css and the loss tangent, tand. Tan ¢
is the tangent of the angle by which the strain in a solid lags the stress causing it and
is often taken as the elastic energy losses in solids [11]. B, is also an explicit function
of the shear modulus, G. The model assumes the material to be isotropic hence the
elastic properties are set by only two parameters, in this case the Poisson’s ratio, v and
¢o. Details of the relationship between these two parameters and the properties: Young’s
modulus, E, G and cs,, referred to later in the paper are given in the appendix.

As can be seen in equation 2, the attenuation is a function of the sum of B,. In our
experiments on nylon in water, the series was truncated at n =3, as higher terms did not
have any significant effect on the attenuation in the frequency range we are considering.

3 Experiment

The experiments were carried out using the pulse-echo technique. A diagram of the mea-
surement cell used in this study is shown in figure. 1. Three fibre suspensions were made
up using different diameters of nylon 66 fibres (Swissflock, Emmenbriicke, Switzerland).
The fibre dimensions are given in table 1. The fibres were weighed and mixed with dis-
tilled water to a concentration of 0.5% by weight. The broadband transducer (V319,
Panametrics, Waltham, MA, USA) used had a centre frequency of 15 MHz. The trans-
ducer was excited and the received signal amplified by a pulser/receiver (Model 5073PR,
Panametrics). The signal was then digitized using an oscilloscope card (CompuScope
12400, Gage Applied Technologies Inc., Lachine, QC, Canada) with a 12-bit resolution
and a sampling rate of 400 MHz. All data were stored in a computer for off-line analysis.
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Table 1: Fibre dimensions

Diameter Length
Dry Saturated
(10°m) (107 m) (1073 m)

14.8 14.9%1.5 1.2
43.6 45.9+£7.2 1.5
49.6 51.9£2.0 1.5
S
K |
u V' Time

rod

Sample Buffer-

space

Steel
reflector

Figure 1: Diagram of the pulse-echo measurement system

The cell was calibrated using water, emptied and carefully filled with the fibre sus-
pension. Each measurement set consisted of a sequence of 100 pulses and their echoes.
Five sets were taken and the sample was stirred after each set. The cell was emptied
and rinsed with temperature-controlled water, before the cell was filled with the next
sample and the process repeated. Once all three samples were measured, the whole pro-
cedure was repeated twice more but with the samples measured in a different order. This
resulted in 1500 pulse echoes for each sample

A digital thermometer (Model F250, Automatic Systems Laboratories LTD, England)
monitored the temperature in the sample under test. During the whole process the
temperature of the suspension varied from a minimum of 20.754+0.2°C to a maximum
of 21.474+0.2°C. The temperature of the water during calibration was taken and used to
calculate the velocity of the wave in the water. The distance d in figure 1 is the distance
between the buffer rod and steel reflector. This was found using this wave velocity and the
time-of-flight for an ultrasonic pulse to travel that distance. The latter was determined
from a cross-correlation technique.

A fast Fourier transform was applied to each echo. The echoes were then averaged
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and the attenuation calculated from

as(f) = gt (53 ) + e ©)

where f is the frequency, S; = Si(f) and Sy = Sy(f) are the frequency dependent
amplitudes of the first and second echoes in the sample, A; = A;(f) and Ay = As(f)
are the frequency dependent amplitudes of the first and second echoes in water. «, is
the theoretical attenuation of water and equals 25 - 107'°f2 [12]. The addition of the
expression

1 Ay
ﬁ In (A_2> + Oy y (3)

in equation 2 serves to calibrate the sample signals with the signals from water to com-
pensate for losses at the interfaces, transducer alignment and possible diffraction effects.
The variance of the attenuation was calculated by first order approximations of the atten-
uation which is described particularly for the pulse-echo model by [13] in their comparison
of parametric to non-parametric techniques for calculating ultrasound attenuation and
phase velocity. Note that the noise in the signal from the distilled water sample is as-
sumed to be insignificant as the signal in water has a high signal to noise ratio due to its
low attenuation.

Lack of homogeneity of the fibre suspension is reduced by taking a large number of
readings. On average the mass fraction of the measured suspension is equal to that of
the whole sample. The volume fraction, f,, used in the model, is calculated as,

pimy
[ UL E— 4
p2+ (p1 — p2)my @

where my is the mass fraction, p; is the density of the water and p, is the density of the

fibre.

Method for Parameter Estimation

The second part of the study tested the inverse solution of the model. An iterative search
was used to find the values of the material properties that minimises the difference
between the model attenuation and the average measured attenuation, over a range
of frequencies with a known fibre diameter. After initial trial runs with four material
properties being estimated i.e. po, ¢, ¥ and tan 4, it was decided that the known value of
the density should be used in the model. The density was fixed to improve the accuracy
of the other three material properties and is a property that in general can be measured
using alternative methods. Additionally, work done by [14] on fibres in pulp indicates
that the density of fibre material does not vary significantly. Elastic properties such as
the G and F were calculated using the formula set out in the appendix, as mentioned
earlier.
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Table 2: Limits used in the parameter estimation procedure.

Material Property Upper Value Lower Value

cy 500 ms~! 7000 ms !
v 0.2 0.5
tan o 0 1
120 120
v,=0.443
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Figure 2: Predicted and measured attenuation for the 52pum nylon 66 fibres. The experimental
attenuation is marked with crosses. The predicted attenuation is modelled in figure (a) with
v =0.443 and in figure (b) with v = 0.410. The other material property values used in the
calculation were ¢y = 2600 ms~', tan § = 0.03 (solid line)/tan & = 0.2 (dotted line), ps = 1140
kgm™'. The dashed line includes thermal and viscous terms.

The algorithm used was a constrained non-linear least squares fit [15]. The constraints
were limits were set on the material properties (see table 2) so that the minimised cost
function would only be a result of realistic values of ¢z, v and tand. The algorithm was
set initially to fit the average experimental attenuation curve. It was run a 100 times
with randomised initial values for the material properties for each of the three different
fibre suspensions. The sensitivity of the algorithm to noise in the data was measured by
setting the algorithm to fit the average experimental attenuation curve plus then minus
two standard deviations and recording the effect on the material parameter estimations.

4 Results and Discussion

4.1 Parameter Estimation

The predicted attenuation was calculated for two different diameters of fibre suspensions
using the values in table 1 over a frequency range matching that of the bandwidth of
the transducer. This predicted and the average measured attenuation is plotted for the
larger fibre suspension in figures 4.2(a) and 4.2(b) and for the smaller fibre suspension in
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Figure 8: Predicted and Measured attenuation for the 15um nylon 66 fibres. As in figure 4.3(b),
the predicted attenuation is modelled in figure (a) with v =0.443 and in figure (b) with v =
0.410. The other material property values used in the calculation were as before. Again, the
dashed line includes thermal and viscous terms.

figures 4.3(a) and 4.3(b). ¢y and v in figures 4.2(a) and 4.3(a) are such that the value for
G matches the reference values for nylon film. As can be seen for both fibre diameters
these values for ¢y and vq give a better fit to the experimental attenuation than the values
for ¢y and vy used in figures 4.2(b) and 4.3(b). The latter two figures had values for ¢y
and vy that matched the value of E for isotropic nylon 66. This suggests that the model
is sensitive to the combined values of ¢y and vy but it also highlights the problem of using
isotropic material reference data for fibres that would be better described as transversely
isotropic.

Comparing figures 4.2(a) and 4.3(a) we see that the model predicts features in the
attenuation in the larger fibre suspension but not in the attenuation in the smaller fibre
suspension. The measured attenuation supports this, however the attenuation feature in
the larger fibre suspension is not as predominant as that predicted, nor is there more than
one feature in the measured attenuation, in the frequency range under consideration. The
features are believed to be caused by resonance in the fibres associated with the fibre
diameter. Their location in the frequency domain is therefore a function of the diameter
of the fibre, as seen in the figures where the material properties are kept constant and
the fibre diameters change. Note that the fibre length of the larger fibres and the smaller
fibres does in fact differ by 0.2 mm. However it was assumed that the difference in length,
which is relatively small in comparison to the difference in diameter, would not cause the
difference in the resonance effects seen here for three reasons. Firstly, because the fibres
tend to have crushed ends where they have been chopped hence reducing end reflections.
Secondly, there is intrinsic attenuation in the fibre material and thirdly, because resonance
features in the model are not length dependant due to the fact that the model is based
on infinitely long fibres.

The value for B; including thermal and viscous effects was solved numerically using
the data in table 3, as done by [9]. This was done to examine the effect on the predicted
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Table 3: Thermal properties for nylon 66 from [9]

Thermal Material Property Value
Heat capacity ( Jkg°K) 1420
Heat conductivity coefficient (Wm™1K~!) 0.36
Thermal expansivity (pK™) 60

attenuation of neglecting the thermal effects and shear in the fluid. These results are
plotted in figures 2 and 3 with dashed lines. They show that including these effects
slightly dampens the resonance feature and in general lowers the predicted attenuation
but does not affect the location of the resonance feature in the larger fibre. Increasing
tan 0 also has a dampening effect as illustrated by the dotted lines in figure 2 and 3.
Although with the increased tan 0 the curves are closer to the shape of the measured
attenuation, it too does not affect the location of the resonance feature as illustrated by
the plots of the larger fibre.

Noise in the measured attenuation is expressed in terms of the standard deviation as
a percentage of the attenuation. The maximum values in the chosen frequency region are
0.2%, 3.4% and 3.9% for the 15 um, 46 um and 52 pm fibres, respectively. The maximum
standard deviation occurs at the higher frequencies where the signal-to-noise ratio is
smaller.

The diameter values used in the predicted attenuation are from table 1. The diameter
measurements made of the water saturated fibres compared well to the diameters stated
by the manufacturer plus the 8% volumetric swelling that is stated in [16] for water
saturated nylon 66.

4.2 Parameter Estimation

Estimates for the material properties were found from the best-fit solution to each of
the average measured attenuation curve of the three different fibre suspensions. The
100 random initial values gave rise to a number of clustered values for ¢z, v5 and tan 4.
The ¢y and vy values were used to calculate £ and G. Figure 4 is a plot of the resulting
estimates for F/, G and tan § for the three different fibre diameter. The size of the marker
in figure 4 represents the value of the cost function and the colour, the value of tan §.
For the 52 ym diameter fibre suspensions, the cluster with the lowest cost function
contained 45% of the best-fit solutions to the attenuation. For the 46 ym diameter fibre
suspension the cluster contained 30% of the best-fit solutions. These best-fit results
are plotted in figure 5. The material property values that gave these best-fit solutions
are presented in table 4 and show that the solutions with these low cost functions were
much closer to the reference material properties values given in table 5 than the solutions
with higher cost functions. This positive results suggests that the model can be used in
solving the inverse problem. The solutions that gave higher cost function were presumed
to be caused by the optimisation algorithm falsely identifying local minima as the global
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Figure 4: Scatter Plots of the estimated E and G with the value of tan § represent by colour.
The different symbol represent the different fibre suspension. The size of the symbol represents
the size of the cost function hence a small symbol represents a better fit.

Table 4: Estimated Values for nylon 66 material properties from the attenuation in the suspen-
sions of the 3 different fibre diameters

Attenuation Measured co v tand FE G
Value Diameter

107 m ms ! GPa GPa
Average 2051 0.418 0.222 1.92 0.68
Av. +2SD 14.8 2072 0.420 0.225 1.94 0.68
Av. - 2SD 2053 0.417 0.217 1.92 0.68
Average 4404 0.488 0.325 1.53 0.51
Av. +2SD 459 6611 0495 0.334 1.55 0.52
Av. - 2SD 3456 0.480 0.320 1.47 0.49
Average 2897 0.463 0.362 1.92 0.66
Av. +2SD 51.9 3835 0.481 0.419 1.82 0.68

Av. - 25D 2460 0.445 0.325 198 0.61
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Table 5: Table of reference values for nylon 66 material properties. Nylon sheet and block
data is obtained from [17] and Goodfellows Cambridge Limited, England respectively, except
where marked. Data from [17] shows that the effect of increasing the frequency on the elastic
moduli of nylon 66 is offset by the effect of the water saturation, hence elastic data obtained
under dry, quasi-static conditions is comparable to that obtained under saturated, high frequency
conditions. E., Eg,,G,and Gy, were derived from compliance data from [17] using a tensor
matrix for transversely isotropic materials, such as [18].

Description Do Ca v tan 6 F, Ey, G, Gor

kgm™' ms™! GPa GPa GPa GPa
Saturated, 1140 - - 0.10 36 23 0.74 0.36
transversely

isotropic sheets

measured at

high frequency

Dry, isotropic 1140 2600 0.410 0.032 3.3 3.3 117" 1.17!
block measured

quasi-statically

! calculated from the isotropic values of E and v
% from [17] for dry, isotropic sheet measurements

minimum.

The results of the fitting procedure to the attenuation in the 15 um fibre suspension
are more ambiguous. The size of the marker in figure 4 shows that best fit solutions to
the attenuation in this suspension had lower cost function values than the cost function
values from the fitting to the attenuation in the other two fibre suspensions. This means
that there was a better fit between the model and the measurement data for a suspension
with this diameter of fibre than in the suspension of the larger fibres. However, in the case
of the small fibre suspension the optimisation procedure converged to a large number of
different points. The estimation from the lowest cost function results were £ = 0.08 GPa
and G = 0.02 GPa, which were over two orders of magnitude less than the reference
values. This misidentification of the material parameters is thought to be because there
are no resonance features captured with this combination of frequency range and fibre
diameter and hence a large number of different values for ¢y, vo and tan § provide good
fit solutions to the model. In this case, this result indicates the model is not suitable for
solving the inverse solution when used with this optimisation procedure.

In the figure we can see a cluster of 26% of the values lying close to the values from the
minimum cost function cluster of the other two fibres. These values had the second lowest
value of the cost function and were the ones that they lay closest to the reference values
of the E and G of all the solutions. Table 4 contains these values since we chose to use
them in evaluating the accuracy of the estimates of the material properties. The fibres
are more accurately described as transversely isotropic than isotropic hence reference
values from drawn nylon film [17] are included in the reference table values. The results
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Figure 5: Best fit curves and measurements of the attenuation in the three different fibre sus-
pensions. The values for the material properties from the best fit curves are given in table

4

in table 4 show that estimated values for the shear modulus lie between the value for
the G, and Gy,. The estimates from the three fibres give values close to each other.
However, there are insufficient numbers of different diameters fibres to draw conclusions
about the variation between the fibres. We define the sensitivity of the estimation of
each parameter to noise in the data as the value estimated from the attenuation plus two
standard deviations. Using this definition we can see that the sensitivity of the shear
modulus to noise is low.

The estimated value for F is out of the range of values expected for the fibre. It varies
between 14% and 36% lower than Ey, (54% lower than the isotropic value), however the
estimates from the three different fibres are close to each other and have low sensitivity
to noise. A probable reason for the low estimation is the assumption in the model of the
fibre being isotropic because if Gy, is correct, even with a v, = 0.5 i.e. incompressible
material, the maximum value of E is 3G and hence it would only just be in the range
given in the table 5. These reference values are possible because of they assume the
fibre to be transversely isotropic compared to the model that assumes the material to be
isotropic.

The ¢y and vy differ from one fibre to the next and from the reference values in
table 5. They also are more sensitive to noise in the attenuation curves than the elastic
moduli. This implies that applying the modelling over this range of frequencies there
is not sufficient data to specify the individual value of ¢, and vy. However, as can be
seen from the consistent values obtained for the elastic moduli, their combined values
are consistent. It is possible that better estimation of ¢y and v, would be obtained if a
greater frequency range was captured.
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Comparison between the estimated values of tan § in table 4 and its reference val-
ues in table 5 shows that the estimated values are an order of magnitude larger than
expected. Possible reasons for this are that the fibres are in a region of resonance and
hence the damping effect is greater. Additionally, the larger estimated value for the loss
tangent may be compensating for thermal and fluid shear effects being neglected in the
model since neglecting thermal effects and fluid shear effects has a damping effect on the
attenuation as previously discussed (see figure 2).

5 Conclusion

The aim of this measurement method was provide ultrasonic based measurements of
the material properties of short, uniform fibres in suspension. The measurement method
gave reasonable and consistent results for the shear modulus with low sensitivity to noise.
The Young’s modulus was lower than predicted but consistent and had low sensitivity to
noise. The reduced value is thought to be caused by the anisotropic nature of the fibres.

The results suggest that the the frequency range should include at least one resonance
feature for the optimisation method used here to unambiguously identify the best-fit to
the measured attenuation and give reasonable estimated values of the material parame-
ters. This was despite a better match between the model and the experimental results
existing in the region without a resonance feature.

The difference between the predicted and the measured attenuation were not ex-
plained by the noise, incorrect tangent delta values or the assumptions of negligible
thermal or viscous effects. Given this and the reasonable accuracy of the shear modulus
it would seem that the errors come from the assumption of isotropic material. Adding
complexity to the model by basing it on transversely isotropic material could improve fit
of the model to the experiment data. However, increasing the complexity could introduce
problems in solving the inverse problem of estimating the material properties from the
measured attenuation. It may slow the estimation procedure and may results in over
parameterisation of the model whereby noise would be modelled as well as introducing
a larger potential number of solutions that would make identifying the correct solution
more difficult.

Further work is needed on the sensitivity of the model to the different parameters
also further experiments on isotropic fibres would aid in explaining the reason for the low
value of Young’s modulus.
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A

Appendix

The relationships between the different elastic properties and the compressional wave
velocity are the standard relationships and for clarity are give here:

The shear modulus, G, is calculated from

(05—-v)

G= (1= ) P2C5. (A.5)

Young’s modulus, F, is calculated from

(1+ov)(1-20)

E= 1-0) P2C5.

(A.6)
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Damping mechanisms of ultrasound scattering in
suspension of cylindrical particles:
Numerical analysis

Yvonne Aitoméki and Torbjorn Lofqvist

Abstract

The addition of viscosity to the ultrasound scattering models increase complexity. Inves-
tigated is the necessity of the addition of viscosity in a suspension of cylindrical scatterers
in two different frequency-radius regimes. The modelled attenuation of a scatterer sur-
rounded by a viscous fluid is compared to that where the fluid is non-viscous. The results
show that the intrinsic loss in the scatterer and the viscosity both have a damping effect
on the attenuation.

The conclusion is that a simpler model where the fluid is assumed to be non-viscous
can be used to model attenuation in suspensions of fibres with tand > 0.1. This holds if
the frequency is not in the region where the viscous skin depth equals the radius.

1 Introduction

Early studies on spherical scatterers have shown the importance of viscosity as a loss
mechanism in the attenuation of ultrasound in suspensions [1,2]. These studies give
explicit expressions for the attenuation in suspension of spherical particles showing clearly
its dependance on the viscosity. These expressions are valid when the wavelength is
much greater than the radius of the particle (long wavelength limit). The importance
of viscosity has been shown in a more recent experimental study where suspensions of
small solid spheres over a wide range of frequencies were investigated [3]. However, the
addition of viscosity adds considerable complexity to the system and in cases where more
elaborate geometry is modelled, the viscosity of the fluid is often neglected [4-7].

Ultrasound scattering models based on those discussed above, have been used to
solve the inverse problem of obtaining material properties of the scatterers [8,9]. Solving
the inverse problem is optimised if only the parameters influencing the attenuation are
included since including redundant parameters has a serious impact on the speed of the
optimisation. This is because, in general, the model becomes more complex if it has
a greater number of parameters. Also, the addition of any unknown parameter adds
another dimension to the search space and hence can have a large impact on the speed
of optimisation.

If we are interested in obtaining the material properties of the scatterer, it would be
of value to know the loss in accuracy of the attenuation when the fluid is assumed to
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be non-viscous. This would provide a basis for appropriate assumptions to be made. It
has been shown that when scattering occurs in between two eigenfrequencies of vibration
of an elastic body, the scatterer appears as an impenetrable object [10]. Hence, if the
interest is in estimating material properties of the scatterer, then the wavelength regime
chosen should be where eigenfrequencies of the scatterers exist. The eigenfrequencies are
likely to be where the wavelength is of the order of the radius of the scatterers. In this
study the influence of viscosity on attenuation where the wavelength is of the same order
as the radius is investigated.

One application of this type of model is for estimating the material properties of
wood fibres in suspension, such as found in paper pulp. With a view to this application,
this paper focuses on cylindrical scatterers with a density close to that of water and
with diameters in the order of 10 microns. The aim is to establish if viscosity effects
can be neglected when modelling the attenuation of ultrasound in a dilute suspension of
such scatterers in water. The model is based on single particle scattering of ultrasound
originally derived for spherical particles [1,2] and adapted for cylindrical scatterers [8].
This is done by comparing the simulated results from the model using the condition
that a non-viscous fluid surrounds the scatterers to the results from the model using the
condition that a viscous fluid surrounds the scatterers. A numerical comparison is chosen
because the number of terms involved in analytical expressions are large, for example, one
of the terms is a result of the determinant of a 6 by 6 matrix. Two frequency-scatterer
radius regimes are investigated, one where the frequency range is chosen such that the
wavelengths are in the order of the radius of the scatterer and the other where the viscous
boundary layer is known to effect the attenuation [3]. The model is only valid for low
concentrations [11] and hence the comparison are done with a suspension of scatterers of
1% concentration by volume.

2 Theory

In a fluid medium, the total attenuation of an ultrasound plane wave in a known dilute
concentration of randomly orientated cylindrical scatterers can be calculated based on the
attenuation of a single cylindrical scatterer [8]. This attenuation from a single scatterer
can be calculated from the scattering of the wave from an oblique orientated cylinder
(see Fig. 1) using the wave equations and associated boundary conditions. The resulting
expression by [8] for the attenuation of cylindrical scatterers is

—2f, 2
ek Z R ( / €nBin cos(w)dw) . (1)

n=0

where f, is the volume fraction; R is the radius of the scatterer; k., is the wave number of
the compressional wave in water and is defined as k. = w/c; where ¢; is the compression
wave velocity in the fluid and w is the angular frequency; R denotes the real part of the
expression, ¥ is the angle of incidence; n is a positive real integer and ¢, = 1 if n = 0,
otherwise €, = 2 and By, is the coefficient associated with the reflected compression wave



PAPER E 135

incident
plane wave

Solid cylinder

Figure 1: Geometry used for formulating the attenuation from a infinitely long cylinder of radius
R.

potential in the fluid. Note that in this paper, the prime superscripts used by [8] have
been replaced by a subscript 2 to represent the solid and a subscript 1 to represent the
fluid terms.

The Bj, coefficients are from the expansion of the of the reflect wave potential, ¢,
in Hankel functions (H}) such that

o1, = (Bm Hél) (kieer) + 2 Z in COS(nG)BanT(LI)(klUCT)> pilkicsz—wt) @)

n=1

where k.. is the component of the wave number in the r direction such that k.. = k. cos(1))
where v is the angle of incidence. These coefficients and the coefficient associated with
other wave potentials (specified later) are calculated from the application of boundary
conditions to the expressions for stress and velocity in terms of wave potentials. When
these wave potentials are expanded in terms Hankel and Bessel function (Bessel func-
tion for the wave potential in the solid since they bounded at r = 0) each boundary
condition becomes a series in cos(n#). As these are orthogonal, each term in the solved
independently of the others (see, for example, [12] for more details).

In the calculation of attenuation, the series in equation 1 was truncated after four
terms. This value was chosen as no significant differences in the attenuation are seen
when a higher number of terms are included.

To test the effect of viscosity on attenuation, By, was calculated under two different
conditions. Firstly assuming the fluid to be viscous and secondly assuming the fluid to
be non-viscous. The thermal effects are not considered.
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2.0.1 Viscous fluid condition

With a viscous fluid surrounding the scatterer, for n > 0 there are six unknown wave
potential coefficients and six boundary conditions. For n = 0, this reduces to four
unknowns and four boundary conditions. The unknown coefficients are Bj, and the
coeflicient associated with the two orthogonal viscous shear waves (evanescent waves) as
well as those associated with the wave potentials in the solid: the compressional wave
and the two orthogonal shear waves. In a viscous fluid, the boundary conditions are that
the velocities and stresses at the surface of the scatterer in the r, § and z directions are
continuous. By,, can therefore be expressed as

Q
Bln = Fv (3)
where
bl Q12 ... Qg
bg agzr ... Q9
Q= (4)
b(; Qg ... Qgp
and
ayp a2 ... Qe
@21 Q21 ... Q2
e (5)
a1 Q62 ... Q66

The elements in the matrices are functions of the properties of the fluid and the solid
and are given in the appendix.

2.0.2 Inviscid fluid condition

When the surrounding fluid is non-viscous there are no evanescent waves appearing at the
surface of the scatterer. Therefore the number of unknown coefficients for n > 0, reduces
to four as does the number of boundary conditions. For n = 0, this reduces further to
only three unknowns and three boundary conditions. The remaining coefficients are By,
and the coefficients associated with the wave potentials in the solid. In a non-viscous
fluid, the boundary conditions are that the velocities and stresses at the surface of the
scatterer in the r are continuous and the stress in the 6 and z directions is zero. The
solution for By, is then

alchT/L(alcc) - J(alcc)L
_alccHylll(alcc) + H}Ll(alcc)[/

B = (6)
where a1, such that ai.. = k1.R (The prime denotes the first derivative of the Bessel
and Hankel functions.) and

L= 5 (7)
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R and S are a subset of the matrices P and @, respectively such that

Q44 Qg5 Q46
R =lasy ass ase (8)
Aeq Qg5 A66

and
Ay Q15 aie
S — |4 Q55 Asz6| - (9)
Qgs Qg5 Q66

With the simplification of an non-viscous fluid, By, is now equivalent to the reflective
wave coefficient used in backscattering [10] if the angle of incidence is zero.

In the subsequent calculation of attenuation from B,, as done by [8] which follows
the derivation used in spherical particles [1,2], the subsequent effect of viscosity on the
reflected wave at a large distance from the scatterer is considered to be negligible. It
is therefore also neglected here and the primary interest is the effect of viscosity on the
energy absorbed at the boundary of the scatterer. When the attenuation is calculated
from the viscous fluid condition it is termed «, and when it is calculated from the non-
viscous fluid condition it is termed ay,,.

3 Method

The attenuation was calculated for the two conditions using equation 1 over the frequency
range 1 MHz to 25 MHz for a scatterer with a radius of 20 pgm. This radius was used
since we chose to test the hypothesis that the viscosity will not affect the attenuation in
suspensions of scatterers of this radius or above. For comparison, a suspension of scat-
terers with a radius approximately equal to the viscosity skin depth, §, in the frequency
range investigated was also tested. This is because it has been shown that viscosity is a
primary cause of attenuation when § = R [3]. ¢ was calculated as

§=~/m/(mpf) (10)

Where f is the frequency, n; is the viscosity and p; is the density, of the fluid [13]. When
f = 3.3MHz, then § = 0.3 um hence the scatterer radius of this second suspension was
set to 0.3 pm.

From the expression for Bj,, we can see that the attenuation depends on both the
properties of the fluid and of the scatterer. To gain an understanding of the effects of
this assumption for different wave velocities the attenuation was calculated for values
of the compression wave velocity in the solid, ¢y, and Poisson’s ratio, v, ranging from
1-103ms™! to 10-10°ms™! and 0 to 0.5 respectively. The intrinsic loss in the scatterers
also effects By, and is quantified by the loss tangent, tan § [14]. Note that the term tan §
used here is not related to the viscous skin depth §. Two different values of tand, a high
value of 0.1 and a low value of 0.01 and a fixed value for p, of 1390 kgm™3 were used in
the calculations.
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c2-10°% (ms™")

Figure 2: Plot of the error caused by excluding viscous effects for a range of values of co and
v. Here R=20pum and tand =0.1

The difference in the attenuation under the two conditions is expressed in terms of a
cost function, V', where

1 N
_ § : 2
V = —N - |O[m‘ — an’ui| (11)

and the ith term is the value at an ith frequency and N is the number of points sampled
in the frequency range. The units of V are Npm~*MHz 1.

4 Results and Discussion

Fig. 2 is a plot of V when R = 20 um for a high tand over a range of values of ¢ and
v. As can be seen the difference between the two conditions is negligible. If the tand is
lower, as shown in Fig. 3, the difference increases slightly for certain values of ¢, and v.
The maximum difference is 12 Npm~'MHz ™! and occurs at ¢; = 4 - 103ms™!, v = 0.41.
The attenuation curves under the two different conditions at this point are plotted in
Fig. 4. It shows that a, and «,, are aligned except for a resonance feature at 2.5 MHz
which does not appear in «, because the viscosity damps this resonance. When tan is
high, this peak is smaller because high values of tan g also have a damping effect on the
resonance.

As discussed in the method, as a comparison «,, and «, were calculated for R =
0.3 um, which is a condition where one would expect the viscosity to have a significant
effect. In this case V' was calculated over the same range of ¢, and v for a high and
low values of tand and is shown in Fig. 5 and Fig. 6. As expected «,, and «, differ
significantly over the whole range of ¢; and v values.

In the flatter regions, such as at ¢; = 6.5 10°ms™', v = 0.27, the difference is
because «, > au,. This is shown in Fig.7 which is a plot of the attenuation under
the two conditions at this point. This figure is with the attenuations calculated using
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v c2-10% (ms™)

Figure 3: Plot of the error caused by excluding viscous effects for a range of values of ca and
v. The values of R and tand are 20 um and 0.01, respectively.

Attenuatiol

5 10 15 20 25
Frequency (MHz)

Figure 4: Attenuation calculated using the non-viscous model, a,,, and the viscous model o,.
Here, R =20 um and tand = 0.01, co = 4-103 ms™! and v = 0.41. The solid line is c, and the

dashed line is .

tand = 0.01 but a similar result was obtained when tand = 0.1.

The peaks in plots Fig. 5 and 6 are where a,, > «,, as was the case for the scatterer
with the large radius. However, when the wavelength of the incident wave is much greater
than R, the resonance peak in «,,, is at a much higher frequency. In this case the peak
is at 185 MHz although its effect is seen at lower frequencies. This is best illustrated by
plotting a,,, and a, up to a high frequency as shown in Fig. 8. Note that the higher
frequency range used in this plot is simply to illustrate the resonance feature.
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c2-10% (ms™)

Figure 5: Plot of the error caused by excluding viscous effects for a range of values of ca and
v. The values of R and tané are 0.3 pum and 0.1, respectively.

c2-10% (ms™)

Figure 6: Plot of the error caused by excluding viscous effects for a range of values of co and
v. The values of R and tand are 0.3 um and 0.01, respectively.

5 Conclusion

If the scatterer has a high intrinsic loss, the non-viscous assumption is valid where the
radius of the scatterer is much greater than the viscous skin depth. With low intrinsic
loss the two conditions differ slightly even when the scatterer radius is much larger than
the viscous skin depth. This is thought to be due to the damping effect the viscosity has
on the resonance of the scatterer.

As expected, in the region where the viscous skin depth is approximately that of
the radius, the viscosity has a considerable effect. However, this is only due in part
to the additional attenuating effect of viscosity in this region. With certain values of
compressional wave velocity and Poisson’s ratio, the difference in the two conditions is
still due to the damping effect the viscosity has on the resonance of the scatterer.

These results suggest that there is a degree of interchangeability between the intrinsic
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S 200r

Frequency (MHz)

Figure 7: Attenuation calculated using the non-viscous model, oy, and the viscous model c,.
Here, R = 20 um and a low tand with ¢2 = 6.5 - 103 ms™! and v = 0.27. The solid line is a,
and the dashed line is cu,y.
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Figure 8: Attenuation calculated using the non-viscous model, oy, and the viscous model c,,
for R =0.3 um and a low tand where c2 and v are 4-103 ms™' and 0.41, respectively. The solid
line is o, and the dashed line is ayy.

loss of the scatterer and viscosity since both parameters affect damping, when the radius
is not of the order of the viscous skin depth.

This could be used to advantage in solving the inverse problem of estimating the
material properties from the attenuation of cylindrical scatters with low density, either
by including viscosity and forgoing the estimation of intrinsic loss or excluding viscosity
and allowing the estimate of intrinsic loss to be raised. Including viscosity but forgoing
the estimation of intrinsic loss could be especially useful if the scatterer is immersed
in a well-defined, low viscous fluid like water where the intrinsic loss of the scatterer is
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not known and not of interest. In doing so the number of parameters that need to be
estimated is reduced. Alternatively, excluding the viscosity and allowing the intrinsic loss
to be raised could allow more complex cross sectional geometries to be modelled such
as elliptical shapes, layered cylinders or non-isotropic materials without the additional
complexity of including viscosity.

A Appendix

The elements of the matrix in equations 4 - 9 are expressed using the following terms and
where terms with subscript 1 represent the fluid and terms with subscript 2 represent the
solid. a. = k.R and k. is the wave number of the compression wave, a.. = k..R and k. is
the component of the wave number in the r direction such that k.. = k. cos(¥). aes = kesR
and k.s is the component of the wave number in the z direction such that k. = k. sin(1)).
Similarly, a; = ksR and k, is the wave number of the shear wave, a,. = ks, R and kg is
the component of the wave number in the r direction such that ks = ks cos(v). J, and
H} are the Bessel functions and Hankel functions of the first order. The prime denotes
the first derivative and double prime denotes the second derivative on the Bessel and
Hankel functions. ps is the density, uo is the shear modulus and tand is loss tangent or
intrinsic loss, of the solid. n; is the viscosity and p; is the density of the fluid. The wave
numbers are defined as ki, = w/c; where ¢; is the compression wave velocity in the fluid
and w is the angular frequency, kiy = (iwpy /m1)2, kae = w/co(1 + i tan ) where ¢y is the
compression wave velocity in the solid and ko5 = w(pa/ ,ug)%. The elements in the matrix
are

ai = _alccHrll/(alcc)

ayy = —iwn®J,(agse)

a3 = —iw(—%sc%(a%c))
ayy = —iwazch;L(%cc)
ars = —n*H} (a14c)

a1 = alscH}L,(alsc)

bl = alcct]TlL (alcc)

a1 = _H:L(alcc)

Q2 = —iwa2st;L(a2sc)
agg = —iw(—Jn(ase))
agy = —iwJp(aee)

ags = _alscHr,lll(alsc)
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26 = HrlL (alsc)

by = Jn(a1ce)
az = —ai,, Hy(are)
aszy =0
asg = —iwad,,Jy(asse)
agy = —iwa; o Jp (a2ec)
ass =0
age = —ai, H,(a15)

by = afeyT(auce)
an = —m((ai, — 2a3.) Hy(aree) — 207 H," (arce))
Q42 = 2#2712(Jn(azsc) - a2st;L(a25c))
43 = 2uza§stZ(a25c)
sy = (WP pa R — 2p005.) T (zee) — 2h2ae Ty, (ec)
Qg5 = _2771”2(H711(alsc) - alscHyll/(alsc))
ass = —2mat, H," (a1s)
by = m((af, — 2a1.) Ju(arce) — 2030y (arcc))
asy = *Ul(alccH}L,(alcc) - Hi(alcc))
asy = (1/2)pa(n* Jn(asc) — ansed) (a2se) + 3500 (a25c))
ass = po(Jn(azse) — azse ) (asse))
asq = /L2(612m] (a2r(’) - Jn(QQCc))
ass = —(1/2)m (n* Hy(a1sc) — arocHy (a15) + at H, (1)
s = *Ul(Hyll(alsc) - alscHylll(a'lsc))
bs = Ul(alch;l(ach — Jn(aree))
a1 = —2771a1ma1ccH (am)
Qg2 = [laml alchn(G2sc)
a6z = NQJ;I(CL%c)(a%SC - a%cs)aﬂsc/alcs

agq = 2M2a26calcs<] (aQCc)
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g5 = *7]1”2alcerll(alsc)
Age = _anrlL/(CLlSC) (a%sc - a%cs)alsl)/alﬂs

bG = 2n1alcsalccjrll (alcc) .
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Estimating material properties of solid and hollow
fibres in suspension using ultrasonic attenuation

Yvonne Aitoméki and Torbjorn Lofqvist

Abstract

The aim of this paper is to estimate the material properties of hollow fibres suspended in
a fluid using the combination of ultrasound measurements and a simple, computationally
efficient analytical model. The industrial application of this method is to evaluate the
properties of wood fibres in paper pulp. The necessity of using a layered cylindrical
model (LCM) as opposed to a solid cylindrical model (SCM) for modeling ultrasound
attenuation in a suspension of hollow fibres is evaluated. The two models are described
and used to solve the inverse problem of estimating material properties from attenuation
measurements in dilute suspensions of solid and hollow polyester fibres. The results show
that the experimental attenuation of hollow fibres differs from that of solid fibres. Results
from using a LCM in conjunction with hollow fibre suspension measurements are similar
to that of using a SCM used in conjunction with solid fibre suspension measurements.
These results compare well to block polyester values for £ and G. However, using the
SCM with the hollow fibre suspension did not produce realistic estimations for £ and G.
We conclude that the LCM gives reasonable estimations of hollow fibre properties and
the SCM is not sufficiently complex to model hollow fibres in this frequency-diameter
region.

1 Introduction

Estimating the material properties of hollow fibres suspended in a fluid using the com-
bination of ultrasound measurements and a simple, computationally efficient analytical
model could potentially provide a means of evaluating the properties of wood fibres in
paper pulp online. Assuming it were possible, it would provide online feedback on the
pulp processing, thereby allowing increased process control and potential efficiency im-
provements.

An early attempt at interpreting attenuation measurement of wood fibres was done
by [1] and has been presented in a report based on his work done on polymer fibers [2].
However attenuation is sensitive to the geometry of the suspended particles (hence its
use in particle sizing [3]). Therefore interpreting attenuation measurements without
geometric data is unreliable. The onset of optical measurement of pulp which provide
geometric information on the wood fibres, opens the possibility of using this data in
ultrasound scattering models to estimate their elastic properties.
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Estimating the material properties of the fibres from measurement of ultrasound at-
tenuation requires a model, measurement data and an estimation process itself where
best fit between the measurement data and the model results is calculated by adjusting
the material fibre properties. The method requires a model that gives unambiguous,
accurate results. Models such as those derived by [4] could be used to calculate the
attenuation in the fibres but the aim is also to use the simplest model possible to pro-
vide the necessary material properties. A previous study on solid nylon fibres showed
promising results for the estimation of shear and to some extent Young’s modulus based
on a simple cylindrical scattering model [5,6]. However, since pulp fibres are hollow, the
suitability of this model for hollow fibres must be investigated.

A library of information has built up over the years on the acoustic behaviour of
cylindrical shells and a comparison of a number of theories was carried out by [7]. The
focus of these works, for example [8], is modes of vibration of the cylindrical shell and
is summarised by [9]. These modes have an impact on the amplitude of an acoustic
waved scattered by a cylindrical shell and hence the attenuation of the acoustic wave.
The relationship between modes of vibration and the amplitude of the scattered wave
has been studied extensively, for example by [10]. A typical model used as a basis for
work done by [11-14], is that of [15], which provides a model for the back-scattering
of ultrasound from a layered cylinder. This assumes the fluid medium surrounding the
scatters to be non-viscous and since the fluid in pulp is water, which has a low viscosity,
this taken as a reasonable assumption.

The following investigation uses a solid model (SCM) [6], attenuation measurements
from hollow and solid fibres in suspension and an estimation process to establish the
fibre properties that give a best fit between the model and the measurements. The
results are then compared to those from using a hollow model (LCM) , the hollow fibre
measurement data and the estimation process. The LCM is based on a layered cylinder
model [15]. Polyester fibres were chosen since they have a greater uniformity in both
geometry and elastic properties than natural fibres. This allows the accuracy of the
parameter estimation to be more easily investigated. Conclusions are drawn on the
appropriate level of complexity of the model needed to obtain estimates for the elastic
properties of the fibres.

2 Theory

In a fluid medium, the total attenuation of an ultrasound plane wave in a suspension of
randomly orientated fibres is calculated based on the attenuation of a single fibre [2] and
is valid for low concentrations. This single fibre attenuation can be calculated from the
scattering of this plane wave from an oblique orientated cylinder using the wave equations
and associated boundary conditions. This is done in the two models used here.
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incident
plane wave

Solid cylinder

Figure 1: Geometry used for formulating the attenuation from an infinitely long cylinder of
radius R.

2.1 Solid fibre model

The solid fibre is modelled using a SCM and is described in detail in [6]. Parameters
relating to the fluid surrounding the fibre are given the subscript 1 and those relating
to the solid are given the subscript 2. The fibre excitation is illustrated in Fig. 1. The
attenuation, «, of the suspension is expressed as

= Rii’; ) ; R ( / €nBn cos(i/))dd)) (1)

where f, is the volume fraction; R is the radius of the fibre; k., is the wave number of the
compressional wave in water; R denotes the real part of the expression, 1 is the angle of
incidence; n is a positive real integer; ¢, = 1 if n = 0, otherwise ¢, = 2 and where B,
is the n'" expansion coefficient of the wave potential of the reflected wave. The solution
for the coefficients B,,, come from using the boundary condition of continuous velocity
in the radial direction and continuous stress in radial, tangential and axial directions at
the fluid-solid interface. The result is an expression for B, as a function of the fluid
properties: viscosity, 1, density, p;, and velocity of the compressional wave, ¢;, and the
fibre properties: radius, R, density, pa, velocity of the compressional wave, ¢y, shear wave,
¢, and the loss tangent, tan ¢.

In low attenuating suspension, an additional background attenuation, asg, should be
added to the attenuation calculated in equation (1) which is defined as

Qpg = fra/ + (1 - fr)a//v (2)

where o is the intrinsic attenuation of the scatterers and o is the intrinsic attenuation
of the surrounding fluid [16]. For very dilute suspensions, f, < 1 hence apg = a”.




152 PAPER F

Hence the expression for the attenuation becomes

2f, "
WR2£61 ; R (/ en By, COS(1/J)d’L/J) +a”. (3)

2.2 Hollow fibre model

As above, the parameters relating to the fluid surrounding the fibre are given the subscript
1 and those relating to the solid are given the subscript 2. In addition, parameters relating
to the inner fluid are given the subscript 3. In this model we assume that the fluid is
non-viscous hence the plane wave can be expressed simply in terms of a scalar potential,
@c,, which is made up of an incident and a reflective part, ¢., = ¢,, + ¢,,. The incident
part is then expanded as a series of Bessel functions of the first kind, J,, and similarly
the reflective part is expanded as a series of first order Hankel functions, Hél), such that,
in cylindrical coordinates,

(Zz €, cos(nd)J, (hm‘)) gilkes; z—wt) )

n=1

and
(Zz €, cos(nf) B, H! (kcclr)> gilkesy z=wt) (5)
n=1

where the radial and axial components of the wave number of the compression wave in
the fluid are ke, = k¢, cos(v) and ks, = ke, sin(¢)), respectively.

In the solid, the oblique angled plane wave induces both compression and shear waves
with wave numbers k., and ks, , respectively. These waves are expressed in terms of scalar
and vector potentials and expanded in Bessel function of the first and second kind, Y,

- (Z "€ c08(nf) (B, Jn (KeeoT) + anYn(kchr))> gilkes; z—wt) (6)
n=1

where, ke, = \/kZ — k2, and

cs1?

(Zz 0 (D) + anwmr))) ot
sz = (Z "6 08(n0) (Eny o (ki) + Gmyﬂ’“ﬁ@”)) ot )
n=1

where, ks, = k%, Bn,, Cnyy Dny, Fry, Ey, and Gy, is the n™ expansion
coefficient of the wave potentials.
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The inner fluid is assumed to be non-viscous and hence can be expressed in terms
of a scalar potential. This is expanded as a series of Bessel functions as it contains the
origin, and

Goy = | D " en c08(n0) T, (kieeyr) | €/ Ferr=70), (9)

n=1

In this case, the inner and outer fluids are the same hence ke., = kee, -

The boundary conditions are that the radial velocity and the stresses are continuous
at the surface when » = R and on the inner surface when r = N. Since the fluids are
assumed to be non-viscous, the tangential and circumferential stresses are zero on these
surfaces. Expressing the stresses and velocities in terms of these series expansions of the
scalar and vector potentials we obtain the expression for B, as

Qeey J’:L(aﬂcl) - J(accl )L

B, =
' —Gee, HY (ace,) + Hi(Gce, ) L

(10)

where

DO

(11)
and

Qg1 Qg2 Ggs Ggy (g5 Az
Gg; agz Ggzs Qgy G35 Asg
Ay Q42 Gyz Qyy Gy5 Oy
Q= |as1 as2 as3 G5y Gs5 Ase  Gsyl,
ag; Qg2 Qg3 Qg; Q65  Gge  Ae7
@y Gy aps ay Ay a0
as; Gsz ags ag; Ggs ags 0

o O O

Q1 Gr2 Q13 G1y Gp5 Q6 0
as; aspy agg ag; ags ag 0
Ay Q2 Qu3 Gy Q5 Gy 0
P=las; ass as3 asy; Gs5 Q56 Q57| -
a1 G2 Qg3 Qg; G5 Qg6 A7
Q71 Qrg Q3 A7y Q75 Q76 0
as; Ggz agg Gg; ags ags O

The matrix elements are functions of the properties of the fluid and the solid and are
defined in the appendix.

The attenuation is derived as in the solid model, hence we use equation (1) replacing
the expression for By, with that of equation (10).
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Table 1: Table of fibre properties.

Property Solid Fibre Hollow Fibre
Outer radius, R (pm) 404+ 0.19 444+ 0.18
Inner radius, N (pum) - 18 +0.18
Density (kgm™3) 1390 1390
Linear density (x10°kgm™) 17 17

E. (GPa) 12 7.3

2.3 Suspensions with distributed radii

Since the attenuation is highly dependent on the size of the scatterer, the distribution
of the radius is included in the model. Hence equation (12) for the attenuation in a
suspension based on scatterers with a single valued radius, has to be modified. A similar
approach to that used for polydisperse suspension of spherical particles [17] is applied
here to cylindrical particles. The distribution of the radii is described by a histogram of
X discrete bin sizes with a volume fraction of scatterers in each bin of f,.,. The average
radius in each bin, R,, is calculated. The attenuation from the SCM (equation (12)) for
a suspension of scatterers with distributed radii becomes

X 0 =
Qsem = Z (W;;J;Z Z R (/0 €7 Bna COS(@Z))d@Z))) +a”. (12)

=1 1 n=0

The LCM has both an inner radius N and an outer radius, R, that can vary inde-
pendently hence an additional division is required. The distribution is now described
by a two dimensional histogram. The first dimension is a before with X bins and the
second dimension is a histogram describing the distribution of the N in Y bins each with
a volume fraction in each bin of f,,,. Hence the attenuation from the LCM (equation
(13)) with a suspension of scatterers with distributed radii becomes,

Gem = > (Z (W_p?‘fk >o® ( e cos(zb)chb) )) tat o (13)

y=1 \z=1 Tyl p=0

3 Experiment

Two samples were prepared, one with solid polyester fibres and the other with hollow
polyester fibres. The fibres were supplied by Wellman International Limited, Ireland,
and the fibre material in both samples had a density of 1390 kgm =3 and a linear density,
pr, of 17-107%kgm™!. The radius of a sample of 30 fibres was measured using a light
microscope. The averages of the measurements are shown in Table 1. The inner diameter
of the hollow fibre was calculated from R, p, and pr and is also given in the table. The
radii distribution was calculated from the measurements and is presented in Table 2.
The axial elasticity, F,, of six hollow and ten solid fibres was measured using an
Instron 4411 tensile testing machine. The load was measured by a 5N standard load cell
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Table 2: Table of radii distribution

Fibre Centre of Bin Average Fraction of total fibres
(pm) (pm)
19 17.9 0.38
Solid, R 20 20.3 0.36
22 23.1 0.26
17.9 18.9 0.21
Hollow, R 22 22.0 0.60
25 24.0 0.19
8 8.1 0.39
Hollow, N 9 9.2 0.30
10 10.3 0.31
Transducer

Sample

Reflector

Figure 2: Diagram of the pulse-echo measurement system

and displacement was registered by an electronic unit of the tensile stage. During the
measurement, the data were transferred to a PC. The upper grip of the machine was
attached through a hinge and thus allowed to self-align. A loading rate of 10% of the
fibre length per minute was used. F, was then calculated from these measurements and
the fibre geometry.

A summary of the fibre properties is given in Table 1. The fibres mixed with pure,
distilled water to a mass fraction of 0.174 0.03%. The experiments were carried out
using a pulse-echo technique and a diagram of the setup is shown in Fig. 2. A broad-
band transducer (V319, Panametrics, Waltham, MA, USA) with a centre frequency of
10 MHz was used. The transducer was excited and the received signal amplified by a
pulser /receiver (Model 5073PR, Panametrics). The signal was then digitized using an
oscilloscope card (CompuScope 12400, Gage Applied Technologies Inc., Lachine, QC,
Canada) with a 12-bit resolution. The sampling rate was set at 200 MHz and all data
were stored in a computer for off-line analysis.

The cell was filled with pure, distilled water and a sequence of 300 pulses and echoes
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were recorded. The cell was then emptied and filled with a sample of the suspension of
solid fibres. A sequence of 500 pulse-echoes were recorded. A sample of the suspension of
hollow fibres was then measured in the same way. The temperature of the suspensions and
the water varied from a minimum of 20.9840.2 °C to a maximum of 21.33+0.2 °C during
the course of the experiments. The time-of-flight between the pulse and the echo was
determined using cross-correlation [18] implemented in Matlab, MathWorks, USA. This
time-of-flight and the speed of sound in water, determined from the water temperature,
was used to estimate the distance the pulse travelled, i.e. twice the distance labelled d
in Fig. 2.

A fast Fourier transform was applied to each echo. Using the average of the wa-
ter echoes as a reference the attenuation in the sample was calculated for a particular
frequency, f, as

1 A "
ae—ﬁln <Sl>+a , (14)

where S; and A; are the frequency dependent amplitudes of the echoes in the sample
and water respectively. o” is the theoretical attenuation of water and assumed to equal
25-10715 2 [19].

The standard deviation of the average of the attenuation, o, was calculated by an
error propagation technique for ultrasound attenuation [20].

4 Estimation Process

Both models were used to solve the inverse problem of estimating the material parameters
from «, over the frequency range 2 MHz - 15 MHz. An iterative search was used to find
the values of the material properties, ¢z, ¥ and tan § that minimises the difference between
the model attenuation, o, and the average «., over a range of frequencies. This difference
is defined as the cost function V' and is such that

N
V= Z |amn - aen|2 (15)
n=1

where a,,, is the attenuation of the model at the n'* frequency interval and o, is the
attenuation calculated from experimental measurements at the n'* frequency interval.
N is the maximum number of frequency intervals used. The fluid parameters p; and
c1, were set to 996 kgm™! and 1490 ms~! respectively. The radii used are those in Table
2. py was set to 1390 kgm™! since this is the density of the material. However for the
calculation of f,., from the mass fraction, a density of 1115 kgm~! was used which is the
density of the hollow fibre structure. The shear wave velocity, c,, as well as the elastic
properties E and G were calculated from the estimated values of co, v and the known ps.

The algorithm used to calculate the cost function, V', was a constrained non-linear
least squares fit [21]. The constraints were limits set on the material properties (see Table
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Table 3: Limits used in the parameter estimation procedure.

Material Property Upper Value Lower Value

Co 500 ms~* 6000 ms—!
v 0.2 0.5
tan o0 0.1 0.5

3) so that the minimised cost function would only be a result of realistic values of c;, v
and tan §. The algorithm was run with 24 different initial values equally spaced over the
search space. The estimation of the properties was done on the average of a.. To assess
the effect of noise on the results, the estimation process was also carried out on «, + g,.

The sample rate used in the estimation process, Sy, is a compromise between the
accuracy and the speed of optimisation. This was set to use 1 in 4 of the experimental
points giving an effective sample rate of 50 MHz since this was sufficient to capture the
details of the experimental curves.

5 Results and Discussion

The results of «, for the solid fibre suspension and the hollow fibre suspension are shown
in Fig. 3. A resonance feature in a, in the solid fibre suspension can be seen clearly at
12 MHz. Such a distinct feature is not seen in . in the hollow fibre suspension though
the curve between 3-7MHz is not as flat as that of a, in the solid fibre suspension.
This suggests that there maybe some resonance effects in this frequency range in the
hollow fibres. In the solid fibre suspension, o, was at a maximum at the two extremes
of the frequency range where it was 0.21 Npm™!, though between these extremes, it was
0.01 Npm~!. For the hollow fibres the figures were 0.17 Npm~" at the extremes, otherwise
it was a maximum of 0.04 Npm~1.

The results of the parameter estimation from fitting ae, to a. in the solid fibre
suspension are presented in terms of ¢y and ¢, in Fig. 4. The figure shows a number
of clustered results where the size of the marker indicates the size of V; a small value
of V' is represented by a small marker. From these marker sizes it can be seen that the
cluster at c; = 1720ms™! , ¢, = 765 ms™!, gives the lowest value of V and hence the best
fit to the experimental results. The fact that there are clusters with larger sizes shows
that the algorithm is sensitive to the initial values of the optimisation in that it does not
successfully converge to the lowest value from all initial values.

The best fit curves associated with the cluster with the lowest V' are plotted in
Fig. 5. The range of values for elastic moduli £ and G from this cluster and from
optimisation procedure using «a, + 20, are given in Table 4. The range of values of the
other parameters are also given in Table 4. It can be seen that the results correspond
well with block polyester but not with the measured E, of the fibres of 12 GPa (see
Table 1). It is commonly accepted that nylon fibres can more accurately be described
as transversely isotropic than isotropic [22]. Also ultrasound frequency measurement of
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Figure 3: Plot of ae in hollow fibre (dashed line) and solid fibre (solid line) suspensions (fibre
concentration: 0.013% by volume).

3000
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c, (ms ')

Figure 4: Plot of the estimated compressional wave velocity and shear wave velocity from opti-
MISING Qsem t0 Qe in the solid fibre suspension. The shade or colour of the markers represent
the value of tan § and the size of marker, the value of the cost function, V.

the elastic constants studies of drawn nylon film show that the Young’s modulus in the
drawn direction (corresponding to E.) is greater than the other directions. Hence the
above results suggests that these values are from the cross sectional plane of the fibre
(r, 0) rather than the axial direction (z). Support for this can be found from the study of
circumferential modes when a cylinder is excited by oblique incidence [23]. However, the
differences in material (the latter study used steel and water) makes direct comparison
difficult since in the steel case additional approximations can be made.

Fig. 6.6(a) shows the estimated values for ¢; and ¢ from optimising the cge to @ in
the hollow fibre suspension. Fig. 6.6(b) shows the estimated values for £ and G. Note
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Figure 5: Plot of the best-fit curves of the cluster with the lowest V. Results from optimising
Qsem 10 Qe in the solid fibre suspension. Fxperimental results are marked with crosses.

Table 4: Table of Estimated and Reference values for Polyester Properties

Polyester Method E G Co Cs v tand
Sample GPa GPa ms~! ms™
Solid fibre U.S+SCM  2.41-2.45 0.83-0.87 1700-1720 760-770 0.372-0.376 0.11-0.12
Hollow fibre U.S+LCM 1.66-1.69 0.57-0.59 2030-2060 630-620  0.447-0.450 0.10
Hollow fibre U.S+SCM  0.50-0.51 0.17 1250-1910 340 0.460-0.484 0.13-0.23
Block Reference! 2-4 0.7-1.5 1600-3100 700-1025 0.37-0.44 -
! taken from Goodfellow Cambridge Limited, Cambridge, UK.

that the size of the marker is scaled by a factor of ten in comparison with Fig. 4, as the
values for V' were small. Unlike the solid fibre results there are no values around 2 GPa.
There are two clusters with small V' but both give very low estimates for £ and G as
shown in Table 4. The best fit curves from these clusters are shown in Fig. 7. As can be
seen, the fit is remarkably good, however the values of the material properties for these
best fit curves are 25% of the reference value of F and G and hence are not reasonable.

The results of the optimisation of aye, to a. in the hollow fibre suspension are given
in Fig. 8. The cluster with the lowest value of V is at c; = 2030ms™! | ¢, = 620 ms~!.
The range of values for elastic moduli £ and G from this cluster and from estimating
the parameters using «, + 20, are given in Table 4. The range of values of the other
parameters are also given in Table 4.

The best fit curves associated with this cluster are plotted in Fig. 9. It can be seen
that unlike the solid fibre, a, of the hollow fibre suspension shows no distinct resonance
features. There is a slight feature centred around 5 MHz which also exists in the fitted
curve. However, the fitted curves also show small resonance features at 7 MHz which
does not appear in the experimental values. One possible explanation for this is that



160 PAPER F

3000 10
2500+ 1 8 k
__ 20007 C 1 @
R 6
£ 15007 [}
8 O 4l
1000f
500¢ 2
(@)
e . ‘ ‘ ‘ o
Q00 2000 3000 4000 5000 6000 % 5 10 15 20 25
c2 (ms™1) E (GPa)
(a) (b)

Figure 6: Fig. 6.6(a) is a plot of the estimated compressional wave velocity and shear wave
velocity and Fig. 6.6(b) is a plot of the estimated Young’s modulus and shear modulus. Both
plots are the results of the parameter estimation procedure when e, s fitted to ae in the hollow
fibre suspension. The shade or colour of the markers represent the value of tan § and the size
of marker, the value of the cost function, V.
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Figure 7: Plot of the best-fit curves of the clusters with two lowest V. The results from the

parameter estimation procedure when ousen, 18 fitted to ae in the hollow fibre suspension. Exper-
imental results are marked with crosses.

the fibres are not isotropic, hence the material properties are dependent on the angle of
incidence in a way that is not captured by the model since the model assumes the fibres
to be isotropic. These anisotropy in the material properties could cause resonance across
a broader range of frequencies.

Since the results of the estimation depend on S, and to some extent on the choice of
limits chosen on the optimisation, some additional clarification of these subjects is given
here.
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Figure 8: Plot of the compressional wave velocity, ca and shear wave velocity, cs from results
of the parameter estimation procedure when oyey i fitted to ae in the hollow fibre suspension.
The shade or colour of the markers represent the value of tan 0 and the size of marker, the
value of the cost function, V.
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Figure 9: Plot of the best-fit curves of the remaining cluster of results from the parameter
estimation procedure when the hollow model is used to model c in the hollow fibre suspension.
FExperimental results are marked with crosses.

The boundary on the volume fraction was set as £20%. This was to take into account
the accuracy of the scales used for weighing the fibres which gives an error of £17%. An
additional few percent was added to allow for other losses in fibres such as fibres floating
on the surface. The lower boundary of the loss tangent was set at a fairly high value of 0.1.
The reason this was chosen is that the layered model used has no damping mechanisms
if the loss tangent is not set since the viscosity is not taken into account. This means
that any resonance peaks tend to be very large. It is also possible, with the low S,
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that these peaks lie between two sample points and hence are not correctly rejected as a
poor fit. Using a higher loss tangent removes these problems and gives more consistent
optimisation results. Values for the loss tangent at ultrasonic frequencies for polyester
are difficult to obtain, though other polymers such as nylon have values of 0.1 [24].

6 Conclusion

The hollow model when used in conjunction with the hollow fibre suspension measure-
ments gave similar estimation of £ and G to those from the solid model used in con-
junction with the solid fibre suspension measurements. These compare well to values of
E and G for block polyester. However the estimated value for F from this method does
not reflect the measured axial value of F.

The solid model when used in conjunction with a hollow fibre suspension does not
give reasonable estimates of the material properties of fibres, at least in this frequency-
diameter region. Hence, despite giving a good fit to the experimental results the model
is not capturing the behaviour of the hollow fibres. We conclude, therefore, that in this
frequency-diameter region, it is necessary to use the more complex hollow model when
estimating material properties such as the elastic modulii from suspensions of hollow
fibres.
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Comparison of softwood and hardwood pulp fibre
elasticity using ultrasound

Yvonne Aitomaki, Jan Niemi and Torbjorn Lofqvist

Abstract

A method based on ultrasound scattering for estimating the elastic properties of fibres in
suspension is tested on pulp. Estimates of the elastic moduli are found by measuring and
modelling the attenuation of ultrasound in hardwood and softwood pulps. The method
gives an single unambiguous value for moduli of each fibre type. The results show that
the refined hardwood and softwood fibres have the equal elastic properties after chemical
treatment and refining. Further work on the method is required to validate these results.

1 Introduction

Fibre properties in pulp contribute significantly to the characteristics of the finish paper
product. One of these properties is the flexibility of fibres which affects the strength
of the paper since greater flexibility improves bonding between the fibre [1]. It would
therefore be advantageous to measure the flexibility of fibres during the production. The
flexibility of a fibre is defined as function of both the elastic modulus of the structure and
its cross sectional geometry, more specifically, its second moment of area [2]. Individual
fibre tests [3] showed that the flexibility of fibres can be altered by the refining energy in
that it increases the second moment of area. Their results also showed a large difference
between the elasticity of fibres at two different fraction levels. Fractioning fibres separates
fibres according to a combination of length and flexibility whereby short or flexible long
fibre pass through a mesh [1]. In these individual fibre test, measurement of the two
different fractions showed that the flexibility of fibres is not only due to differences in the
second moment of area but to their elasticity.

Some of the current methods of measuring fibre flexibility are from single fibres mea-
surement in the laboratory [3,4]. Measurements of the fibres flexibility can also be
obtained from devices such as the SFTI Fibermaster (Lorentzen-Wettre, Sweden), by
measuring the way a fibre is deformed by different rates of flow through the instrument.
This is however, a relative measure of flexibility and it is difficult to separate the contri-
bution of the geometry from the elastic properties of the fibres [5].

A potential method of measuring the elastic properties of fibre and hence their flex-
ibility is to measure the elastic modulus by ultrasound. However, ultrasound scattering
has a large dependence on the size of the scatterer which is why it has be used for parti-
cle sizing in opaque mixtures [6]. Therefore an integral part of this method is its use in
conjunction with optical measurement devices such as a PulpEye (Eurocon Analyzer AB,
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Sweden) or the STFI Fibermaster. The ultrasound method has been tested on hollow
polymer fibres and shows some promising results [7]. Since ultrasound is non-destructive,
non-contact quick and inexpensive it lends itself to online material characterisation.

Although this model shows promising results for synthetic fibres it is less certain
whether it is suitable for testing wood fibres which are considerably less cylindrical in
form than synthetic fibres. Wood fibre also have a more complex fibre wall structure than
synthetic fibres. This added complexity may cause additional anisotropic behaviour that
is not included in the model.

This study is therefore a preliminary investigation on whether ultrasound can be
used to measure the elastic properties of fibres in pulp. A comparison is done between
softwood pulp and hardwood pulp. The method is based on solving the inverse problem.
This is where measurements are taken and the problem is to establish the parameter
values that would produce such measurements. The method therefore has three parts:
measuring ultrasound attenuation from fibres in suspension, modelling the attenuation
and optimising the fit between the model and the measurements. The optimisation gives
an estimate of the material properties that give the best fit to the measurements. The
method requires knowledge of the geometric properties of the fibres.

2 Method

2.1 Experimental setup

The ultrasound was measured using a pulse-echo technique in the measurement cell
illustrated in Fig. 1. The cell was inserted in as a module in PulpEye (Eurocon Analyzer
AB, Sweden) optical based pulp analyzer. The propagating ultrasonic signal travels
through the suspension, reflects back at a polished steel reflector and is then received
by the transducer. The distance between the transducer and the reflector was 19.2 mm.
The ultrasound was generated by a PVDF transducer from GE Sensing & Inspection
Technologies, PA, USA, with a center frequency of 25 MHz. The transducer was excited
and amplified by a dual pulser/receiver model DPR500 from JSR ultrasonics, NY, USA.
The captured ultrasonic signal from the pulser/receiver was digitized by an oscilloscope
card (CompuScope 12400, from Gage Applied Technologies Inc., Canada), sampling at
100 MHz with a 12-bit resolution. The data was store on a PC for later analysis.

Note that the measurement cell is a combined optical and ultrasonic measurement
device but, for clarity, the optical section has not been shown since this was not used in
this study.

The softwood pulp was that used for kraftliner Brown and the hardwood pulp was
that used for kraftliner white. Both of are were chemical pulps after the refining stage
and were delivered from SCA Munksund, Sweden. The pulp was first fractioned using
a Britt Jar, with a mesh 50, to remove the fines contents in the pulp sample. After
the measurements a smaller sample of each pulp was used to determine the total mass
consistency (method standard ISO 4119:1995 [8]). The fibre geometry was analyzed by
PulpEye using a camera based method.
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Figure 1: Diagram of the experimental setup

The samples were poured into the PulpEye and cycled in a closed loop. During the
each experiment the system was pressurized. This means that size of air bubbles in
the samples are reduced. After a initial pumping sequence to make the samples more
homogeneous, the measurement started. The measurement procedure was repeated twice
in order to reduce variation in the measurements average.

For each pulp sample, 300 ultrasonic pulses was recorded. The temperature in the
suspension was monitored during the whole experiment and ranged from 10.0-10.7°C.
After thoroughly rinsing the system, the PulpEye was filled with water and three reference
signals were measured and the temperature was recorded as 10.1°C.

A discrete Fourier transform was performed on the stored signals, which were then
averaged. The attenuation was then calculated as

1 P,
Q. = ﬁln (P:U) +a”, (1

where P; and P, are the amplitudes of the echoes in the sample and water respectively.
o is the theoretical attenuation of water and assumed to equal 36.1-1071° f2 [9].

~—

The standard deviation of the mean was calculated by propagating errors through
the above equation. The frequency range is set by the spectral content of the received
pulse echo. In this study, the frequency range is found to be 4-29 MHz.
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2.2 Model and Optimisation

The second part of the method requires a model of the attenuation of ultrasound in a
suspension of fibres. It is based on the attenuation, «,,, of an ultrasound wave scattered
by a layered cylinder. The expression for ay, is derived elsewhere [7] and is

= = (s 2y cos o’
o =2 (Z <7er 2k Z% (/ nBiney WW))) + ol (2)

y=1 =1 ¢1 n=0
In this expression the distribution of the cross sectional geometry is described by a two
dimensional histogram where the first dimension is of x intervals of the radial sizes X
and the second dimension is y intervals of the lumen sizes Y. The volume fraction in
each interval is given by f..,. R, is the average radius of the fibres within the interval
X. k. is the wave number of the compression wave in the fluid. R denotes the real
part of the expression, 1 is the angle of incidence; n is a positive real integer; ¢, = 1
if n = 0, otherwise ¢, = 2 and where B,,, is the n'™ expansion coefficient of the wave
potential of the reflected wave for X,Y fibre size interval. The expression for B, is a
function of the fibre properties and the properties of the water and is given in a previous
publication [7]. & is the intrinsic attenuation of water. A layered cylinder is used since,
as the afore mentioned study shows, a solid fibre model is not sufficiently complex to
capture the behaviour of the ultrasound.

The elastic moduli, Young’s modulus, E, and the shear modulus, G, are estimated by
the method. These are calculated from the properties estimated from the model which
are the compression wave velocity, co, the shear wave velocity, c;, and the intrinsic loss,
tand. The properties of water are assumed to be known and the values used in the model
are the compression wave velocity, ¢; = 1496 ms' and the density, p; = 996kgm=3. The
water is assumed to be non-viscous which has be found to be a reasonable assumption if
the solid is viscoelastic [7]. Studies have shown the fibre material to be viscoelastic [10].

The fibre diameters, ¢ were sorted into size grouping and the percentage in each group
was calculated. The average diameter of each group was also calculated. These numbers
are presented in Table 1 and were used in equation 2.

The average diameter of the softwood fibre was 29.84+ 2.2 yum and the average wall
thickness was 2.42 pm. This gives an average lumen size of 24.9 yum and makes up for
84% of the fibre. In the calculation we assume that the lumen is this percentage in all
the fibres. For hardwood fibres, the assumption is that the lumen makes up 81% of the
fibre. This is based on an average wall thickness of 1.80 um and an average diameter of
18.55+ 0.92 pm.

The dry mass fraction of the pulps were measured as 0.206% and 0.232% for the
hardwood and the softwood samples, respectively. From the geometry of the fibres and
taking the density of the wood fibre material as 1500 kgm =3 [4], this gives a density for the
hardwood fibre structure as 491 kgm= and for the softwood fibre structure as 442 kgm—3
These are typical values for pine. The volume fraction is therefore 0.34% and 0.41% for
the hardwood and the softwood pulps, respectively.

The algorithm used in the optimisation is a non-linear least square fit with boundaries
on the parameters [11]. These boundaries used are given in Table 2. In addition the
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Table 1: Table of radii distribution

Fibre Upper limit of Bin Average Percentage of fibres
() () %
<16 14.8 5.6
22 20 19.4
Softwood, ¢ 28 26.2 30.4
34 31.9 22.8
<35 45.1 21.8
10 9.5 2.2
16 14.9 37.9
Hardwood, ¢ 18 194 45.6
22 254 11.6
25 33.7 2.7

Table 2: Limits used in the parameter estimation procedure.

Material Property Lower Value Upper Value

Co 500 ms—* 6000 ms—!
v 0.2 0.5
tan o0 0.1 0.5

volume fraction was allowed to vary down to 0.15% to allow for the fact that a proportion
of the fibres are collapsed and therefore the number of fibres per unit volume is less. The
results of the optimisation algorithm can depend on the initial values. This is because
the algorithm is not always able to locate the best-fit between the measured attenuation
and the modelled attenuation. To improve the chances of the best fit being located, 16
different initial values for the parameters being estimated, were used. These were spaced
evenly across the allowed search space.

3 Results

Figure 2 is a plot of the experimental measurements of the attenuation in the softwood
and the hardwood pulp. The standard deviation of the mean, o,,, of the measurements
was a maximum of 1.2Npm~! for the softwood and the hardwood pulps. However,
these maximum in o, were only at the highest frequencies, otherwise o, was less than
0.3 Npm~!. The gradients for both pulps appear constant and do not appear to show any
of the resonance peaks that have been observed in experimental attenuation in synthetic
fibre suspension [12,13]. However, if the attenuation was due solely to the wave travelling
through the fibre material, without scattering or resonance, it would be proportional to
the quantity of the material and its intrinsic attenuation. Therefore it would be expected
that the pulp with the higher volume fraction would have a large attenuation unless the
intrinsic loss was significantly higher. The results show however that larger attenuation
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Figure 2: Plot of . in softwood fibre (solid line) and hardwood fibre (dashed line) pulps.

Table 8: Table of Estimated Values for Hardwood and Softwood Properties

Fibre Type E G Co Cs v tan §
GPa GPa  ms™! ms!
Softwood fibres 1.56-1.60 0.52-0.53 6000 590-604 0.495 0.1-0.08
Hardwood fibre 1.56-1.57 0.52-0.53 6000 590-592 0.495  0.05

is in the suspension with the slightly lower volume fraction. This indicates that either
there are significant differences in intrinsic attenuation properties of the material or that
the attenuation is a result of a more complex interaction between the fibres and the
ultrasound. In the model, the attenuation is based on the latter.

In solving inverse problems, it is common to obtain ambiguous results. In our case,
the fitting procedure did successfully identify one result that had a lower error difference
between the measured and modelled attenuation. The solution with the lowest error
for the softwood and the hardwood pulps are plotted in figures 7.3(a) and 7.3(b). The
estimates of the material properties of these best-fits are given in table 3 for both types
of pulp. As can be seen from 7.3(a), the fit to the attenuation in the softwood pulp is
good and the estimate values of the Young’s modulus match the values from a study
on individual fibre measurements [3]. The hardwood fibre estimates of all the properties
are very close to that of the softwood fibres. The best fit curve captures the overall
trend of the measurement curve but there exists two resonance features in the modelled
attenuation that are not seen in the experimental results.



PAPER G 175

80 T T T T T 90

~
=]
T

/m)
S (4] (2]
o o o
: : :

Attenuation (Np/m)

w
=]
T

Attenuation (Np/

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Frequency (MHz) Frequency (MHz)

(a) (b)

Figure 3: Results from optimising oy, to ae in the pulp. Experimental results are marked with
crosses. Fig. 7.3(a) is the best-fit for the softwood pulp and Fig. 7.3(b) is the best-fit to the
hardwood pulp.

4 Discussion

As discussed in the introduction, the emphasis of this study is on evaluating the method
and to a less extent interpreting the results of the comparison between the two pulp. This
method has previously been tested on synthetic fibres which although were hollow and
varied in diameter, were cylindrical. Wood fibre cross section would be more accurately
described by an ellipse than circular, however the mathematical solutions to the scattering
problem with this geometry are considerable more complex.

Therefore the assumption this method relies on is that the elliptical shape of a layered
scatterer will only affect the attenuation to a certain degree. This is thought to be a
reasonable assumption because the attenuation is an average over all angles of incidence
and is based on the calculation of the energy over the surface of the scatterer at a large
distance away from it. However variations in the shape would cause the resonance from
different fibres to be at slightly different frequencies hence clear peaks will not be seen
and there will be some discrepancies between the model and the measured attenuation.

Inherent in this is that differences in the elastic properties of the material have a larger
impact on the attenuation than the differences in shape. Given this is true, it should
therefore be possible to establish the elastic properties without modelling the exact shape
of the layered scatterer which in this case is the fibre.

The absence of the peaks in measured attenuation of the hardwood pulp can therefore
be explained by the fact that the fibres are not perfect cylinders and vary in shape. The
reason for the fact that no resonance peaks are found in the softwood despite the value
of the material properties being almost identical is that the diameter distribution of the
softwood fibres is greater than the hardwood fibres (see Table 1). A greater distribution
in diameter means that the resonance peaks occur across a broader range of frequencies
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Figure 4: Plot of the attenuation due to the different diameter (given in table 1) that summed,
give the best fit to the measured attenuation in the softwood fibre pulp (shown in Fig. 7.3(a))

and when these are summed together the result is that there is virtually no evidence of
the resonance peaks are seen in the final curve. To illustrate this point Fig. 4 shows
a plot of the attenuation from the different diameters that make up the total modelled
attenuation in Fig. 7.3(a).

Examining the results it is seen that the estimated values for ¢, for both the softwood
and the hardwood pulp were equal to the boundary value set for the optimisation pro-
cess. Since this velocity is that of steel it is highly unlikely to be the true value of the c,.
However, the estimated value for Young’s modulus is a typical value. The most likely
source of this error is due to the assumption in the model that the material is isotropic
as opposed to transversely isotropic. It maybe possible to use a transversely isotropic
material but this introduces five independent elastic constants instead of two and hence
could introduce further ambiguities into the results of the optimisation. Hence, an alter-
native option is to not limit the value of ¢y, allow it to be adjusted to compensate for
the error in assuming the material to be isotropic and only use the value of the Young’s
modulus that is calculated from it.

The tan é for the hardwood fibres was equal to the boundary value set for the optimi-
sation process. This was also true of the volume fraction for hardwood fibres. So, with
the volume fraction at its minimum value and knowing that a low tangent delta value
lowers the attenuation at all points except for the resonance peaks, it would appear that
the model is predicting the attenuation to be higher than the measurement value. This
could be an effect of a large number of collapsed fibres.

The estimated value for F of 1.6 GPa compares well with the upper range of individual
fibre measurements [3], this, however, is unexpected. This is because others studies on
polymer fibres have previously shown that the estimated value is close to that of the
transverse Young’s modulus, Fj, and not the longitudinal direction, F,. This supported
to some extent by studies on the modes of vibration in nylon cylinder in water [7] but
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the relationship of the modes of vibration to a specific modulus was not done. It could
be that the wood material is now isotropic possibly due to the action of the refining
process. However, this is unlikely and if the material was isotropic then the reason for
the model giving very high values for ¢y could not be true. We would suggest therefore
that the value estimated is Fjy, and that F, is typically much higher than this. The pulp
used in the individual study was refined thermomechanical pulp of black spruce whereas
the pulps used here was refined kraft pulp. It is therefore expected that there would
be considerable differences in the elastic properties. This supports the suggestion that
the value estimated using the ultrasound method is that of Fy,. . The individual fibres
testing was also done at much lower frequencies which could also be a cause of difference
in the measurements .

Not all the initial values converged on the lowest difference between the measured
attenuation and the modelled attenuation. Modification to the error difference calculation
could improve the number of values that converged to the best fit value so that the
optimisation would be less sensitive to the initial values. This would make it unnecessary
to have several initial values and hence the optimisation process would be more efficient.

A considerably improvement would be to included the measurement the wall thickness
with respect to the fibre diameter for each fibre. This would allow account to be taken
of the fact that the wall thickness can vary in proportion to the size of the fibre.

5 Conclusion

The method successfully identifies a single value for the shear modulus and the Young’s
modulus. The results show that the hardwood fibres and softwood fibres which are
processed for the use in Kraftliner have almost identical elastic properties. However,
some further work is needed to establish the accuracy of the estimation.

Most importantly, it needs to be established if the elastic properties of the fibres
are more important to the attenuation that the exact geometry of the fibre. This can
be done by investigating the effect of the ellipsoidal rather than cylindrical form of the
fibres. This could be tested experimentally by scaling the system such that the dimension
of the scatterer is increased, and the frequency range decreased, to such a degree that the
scatterer shape could be more easily controlled. If it is found that variation in the the
scattering geometry has a large impact on the attenuation then the model would have to
be replaced with a model that has the more complex ellipsoidal geometry.

The effect of collapsed fibres on the attenuation should also be further investigated as
well as the possibilities of identifying mixtures of fibres with different elastic properties.

An improved test of this model would be to compare pulp before and after refining
or comparing sample from different pulp treatments.

References

[1] H. Karlsson, Fibre Guide. Lorentzen & Wettre, Kista, Sweden, 2006.



178

PAPER G

2]
3]

[10]

[11]

[12]

[13]

A. Kaw, Mechanics of composite materials. Taylor & Francis, 2006.

J. Tchepel, J. Provan, A. Nishida, and C. Biggs, “A procedure for measuring the
flexilibity of single wood-pulp fibres,” Mechanics of Composite Materials, vol. 42,
no. 1, pp. 83-92, 2006.

E. Ehrnrooth, “Softening and mechanical behaviour of single wood pulp fibres - the
influence of matrix composition and chemical and physical characteristics,” PhD
Thesis, Department of Wood and Polymer Chemistry, University of Helsinki, 1982.

A. Hagedorn, J. Orccotoma, P. Schueler, B. Snow, and J. Jarvinen, “Optimizing
machine efficiency through fibre quality management,” in 2006 TAPPI Papermaker’s
Conference. Technical Assoc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>