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Abstract

This thesis focuses on the use of third-order statistics in adaptive blind deconvolution

of asymmetric impulsive signals. Traditional methods are typically based on fourth-

order moments, which can discriminate signals with heavy-tailed probability functions

(i.e. ‘spiky’ signals) from corresponding filtered versions. The work herein demonstrates

that, by using third-order central moments, asymmetry in such signals (e.g. only positive

‘spikes’) can be exploited to achieve faster convergence of algorithms and increased ro-

bustness to noise. The reasons for these benefits lie mainly in the use of error functions

with lower polynomial orders, which leads to simpler gradient equations, improving the

convergence rate. The increased robustness to noise is due to the fact that all odd-order

statistics of symmetric signals (e.g. Gaussian noise) are zero.

A previously known computationally simple, norm-constrained algorithm for gradient

search is also examined. It is demonstrated that this algorithm accomplishes third-order

moment maximization by gradient ascent, without the undesired effect of increasing

filter norm. Norm-constrained optimization is commonly achieved using periodic nor-

malization of the filter vector, involving costly divides and square-root operations. The

investigated algorithm requires significantly fewer operations, and uses only multiplica-

tions and additions, making it well suited for implementation on fixed-point digital signal

processors.

Numerical experiments, demonstrating the usefulness of the proposed methods, in-

clude blind deconvolution of sound from a diesel engine, and blind equalization of a

synthetic ultra-wideband (UWB) communication channel.
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Introduction

The general topic of this thesis is adaptive blind deconvolution for digital real-time

applications. The specific issues of focus are methods that give low computational com-

plexity and fast convergence of algorithms when used on impulsive signals. A common

thread in the three publications supplied herein is exploitation of asymmetry in impulsive

signals to gain such features. An introduction to the general area follows.

1 Thesis Overview

s c

Channel

u
f

Equalizer

ŝ

Unknown environment

Figure 1: Block diagram of a channel-equalizer model.

Adaptive blind deconvolution can be described as reconstructing unknown, distorted

signals using self-adjusting digital filters. Figure 1 shows a block-diagram model of the

standard blind deconvolution problem. The signal s is a desired signal that needs to

be transferred, measured or recorded. Assume that s cannot be directly observed: only

a filtered version u is available. The object of blind deconvolution is to recover s from

observations of u with limited, or no knowledge of either s or the system c through which

s is filtered. In Figure 1, s is recovered from u using a linear equalizer f , which acts as

the inverse system to c. The output signal ŝ from the equalizer is an estimate of the

desired signal.

A few notations will be defined. The signal s will be referred to as the source signal,

c the channel, u the channel output signal, f the equalizer, and ŝ the equalizer output
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2 Introduction

signal. A couple of examples are presented to clarify the subject.

Example: Mobile Communication

Figure 2 shows mobile communication between a cellphone situated in a car in motion and

a base-station antenna. As the radio waves from the base-station propagate through the

air, they get attenuated, lowering the quality of the transferred signal. However, another

serious problem occurs due to the fact that the radio waves are reflected at different near-

and far-field scatterers. The signal reaching the car in Figure 2 will therefore consist of

a possible direct-path signal, combined with several echoed versions, each echo arriving

at different times. This unavoidable effect, called multipath spread, causes distortion and

severely limits the rate at which digital data can be transferred. Referring to Figure 1;

the source signal s is here the base station signal, the channel c is the combined effect

of the air and the scatterers (e.g. mountains and buildings), and the observed signal u is

the actual radio waves that reach the car. The cellphone must use an equalizer to undo

the channel effects for proper operation. Note that with s and c being unknown at the

receiver, it is not immediately clear what equalizer parameterization should be used to

achieve the desired effect.

(s)

(c)

(u)

Figure 2: Mobile communication.

Example: Seismic Reflection Surveying

Figure 3 shows a simplified model of geological exploration using a seismic reflection

method. Variants of this technique are used to obtain a seismic profile of an area of land,

which could for example be used to detect oil or gas reserves. The principle behind the

method is that different layers of earth have different densities, and a seismic wave that

propagates through these layers will get reflected in the boundaries between them, due
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to the change in seismic impedance. A cross-section of earth layers is shown in Figure 3.

A hydraulic vibrator generates seismic waves (s) that propagate down into the ground

(c). The reflected waves (u) are recorded by a geophone situated at some distance from

the vibrator. A single impulse from the vibrator will reach the geophone as a series of

delayed and attenuated replicas.

If the ’channel’, i.e. the combined layers of earth, can be identified, a seismic profile

is achieved. Theoretically, if an equalizer can be found that, when applied to u perfectly

recovers the source signal s, then all information of c must be contained within the

equalizer. The problem of identifying a channel is fundamentally related to equalizing it.

(s) (c)
(u)

Hydraulic

vibrator
Geophone

Ground

Reflecting

layers

Seismic

waves

Figure 3: Seismic reflection surveying.

1.1 Time Dispersion

In both examples in Figures 2 and 3, the desired source signals suffer time dispersion.

That is, the source signals get spread among several delayed copies of various strengths,

arriving at the receiving end at different time instants: they are dispersed in time. Figure

4 shows time-amplitude plots of an impulse-shaped source signal and a corresponding

time-dispersed channel output.

Dispersion in a mobile channel causes bit errors in the digital communication signal

which, if not properly compensated for, can make information transfer impossible. The

dispersion caused by the reflective earth layers in Figure 3 contains valuable information

that needs to be retrieved. An equalizer designed to undo dispersion in a channel should,

ideally, recover the source signal at its output. In most practical situations, a perfect

equalizer cannot be constructed, and a sub-optimal variant that gives an estimate of s is

used.
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Figure 4: Example of a source signal s (left), and the time-dispersed channel output signal u

(right).

1.2 Adaptive Equalizers

Consider again the mobile communication in Figure 2. Note that, as the car moves,

the surrounding conditions will change. Hence, the characteristics of the channel will

change over time. Therefore, an equalizer designed to continuously undo the channel

must react to these variations. An adaptive equalizer tracks changes in a time-varying

channel, and adjusts itself to give as good an estimate of s as possible within existing

constraints. Although the seismic profile will not change (rapidly) over time, finding an

equalizer that recovers the source signal may be difficult to do without resorting to some

iterative method, in which an adaptive equalizer is adjusted using some algorithm, until

a sufficiently accurate model is achieved. The following section gives an overview of the

subject of adaptive filters, of which adaptive equalization is one application.

2 Adaptive Filtering

Adaptive filters, i.e. filters that are self-adjusting according to some criteria, are used in

many applications of signal processing. They are the subject of many textbooks, two

good references are [1] and [2]. To motivate the use of adaptive filters over fixed filters,

consider the following situations.

• Changing environments: If the parameters of the application are time-varying,

an adaptive filter may be used to track such variations. The mobile channel is an

example of a time-varying system. An equalizer used to continuously mitigate the

dispersion caused by that channel must therefore be adaptive.

• Unknown environments: Deriving an equalizer is usually straightforward if a

mathematical model of the channel is known. However, if the model is unknown,

traditional design methods cannot be used. An adaptive equalizer may be trained

to obtain a good inverse of a channel to which a model is not available.

• Complex environments: If the model of a channel is very complex, there may

not be a closed-form solution to the equalizer design problem. In such cases, an

equalizer may be adapted to obtain an iterative solution.
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The fundamentals of adaptive filters are best explained by examples. Two common

applications are shown below.

Example: System Identification

s
d̂

d

e

Plant

Unknown system

Plant

model

Error

function

∑
+

−

Figure 5: Adaptive system identification.

Figure 5 shows a simple model in which an adaptive filter used for identification of

an unknown system. The unknown system might for example be a plant (machinery)

for which an automatic control system is to be designed. For this purpose, a reasonable

mathematical model of the plant is needed.

A signal s is input to both the adaptive filter and the plant. An error signal e is

then formed as the difference between the plant output, or reference signal, d and the

adaptive filter output d̂. The error signal is then fed to some error function, which

determines how the filter parameters should be adjusted to minimize e. If the filter can

be adapted to make e vanish, d̂ must equal d, and the filter becomes a model of the plant.

In reality, e can never be driven to zero indefinitely, due to limitations in the adaptive

filter, measurement noise, etc. Minimizing the mean power of e is therefore the typical

approach.

This form of adaptive system identification may be employed when the unknown

system has a complex structure, preventing the use of physical modeling. Another mo-

tivation for adaptive identification might be that the plant characteristics change over

time. Automatic control of a time-varying plant calls for the use of continuous, or on-line

system identification.
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Figure 6: Adaptive channel equalization.

Example: Equalization of a Digital Communication Channel

Figure 6 shows a model of adaptive equalization of a digital communication channel.

The subscript n denotes a sampling time index. The signal sn is transferred over a

channel with unknown characteristics. At the other end of the communication link, the

channel output xn plus some channel noise zn is received as the signal un. To recover sn

from un, an adaptive equalizer is adjusted according to some function of an error signal

en. However, unlike the system identification example, the reference signal here is the

transferred signal sn, which the equalizer output should equal ideally. The error signal

en should therefore be the difference between what was transferred and what is actually

received. Of course, en cannot be formed in this way. If the receiver had access to sn,

there would be no need for an equalizer in the first place.

A common method used to obtain the error signal is to send a training signal in sn.

The training signal is a short stream of symbols known beforehand by the receiver (e.g.

stored locally in a waveform table), sent at a pre-determined time, typically at the start-

up phase of communication. While the training signal is transmitted, the receiver can

now form an error signal en, since it knows what is being sent in sn. Adaptation of the

equalizer is thus done during reception of the training signal, after which a dispersion-

free communication hopefully can be initiated. The dotted line in Figure 6 symbolizes

the virtual link that the training signal gives. The delay element compensates for the

combined delay of the channel and equalizer.

If the communication channel in Figure 6 is time-varying, the training signal needs to

be transmitted periodically, so that the equalizer may continuously track changes in the

channel characteristics. Note that while this gives effective equalization, using up part

of the transmissions for training reduces the useful information throughput of the link.



2. Adaptive Filtering 7

Given the two previous examples, a few mathematical preliminaries of adaptive digital

filters are given, following approximately the development of [1].

2.1 Mean-Square Error (MSE) Minimization

The purpose of an adaptive filter is to minimize the error signal en in some way since,

as mentioned, making en vanish for all n is usually not possible due to measurement

noise, limited filter order and other effects. Thus, the filter must minimize some suitable

error function of en. A popular choice of error function is the mean-square error (MSE),

defined as the mean power of en,

ξ � E
{
e2

n

}
= E

{
(dn − yn)2

}
, (1)

where E{·} denotes expectation. The filter used is assumed to be an FIR (finite impulse

response) filter of order N , represented by the real coefficient vector

f � [f0 f1 · · · fN ]T .

For now, f is assumed to be constant in time, i.e. independent of n. The filter output

signal yn is then the vector inner product between f and the regressor vector (i.e. filter

state) of input samples to the filter, un � [un un−1 · · · un−N ]T,

yn = fTun. (2)

Inserting (2) into (1) gives

ξ = E
{
d2

n

}
+ f TE

{
unu

T
n

}
f − 2E

{
dnu

T
n

}
f

= E
{
d2

n

}
+ f TRf − 2PTf , (3)

with R and P defined as

R � E
{
unu

T
n

}
, and

P � E
{
dnu

T
n

}
respectively. Under the assumption of un and dn being wide-sense stationary random

processes, the elements of P and R are constant.

From (3), it is seen that the mean-square error is a quadratic function of the filter

vector. Taking the gradient of (3) with respect to f gives

∇∇∇ = 2Rf − 2P. (4)

A vector f∗ that minimizes ξ must be the solution to ∇∇∇ = 0, which is

f∗ = R−1P, (5)

assuming the inverse of R exists. It should be noted that a necessary condition for f∗ to

be the unique vector that minimizes ξ is that R is positive definite [2].
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2.2 Iterative MSE Minimization: The LMS Algorithm

From Equation (5), the unique N th-order filter vector f∗ that, under the necessary con-

dition on R, minimizes the mean square of en is given. However, lacking the stationarity

in un and dn or other necessary conditions, there is often a need for adaptive filters which

minimize the MSE in an iterative manner. Some more precise motivations may now be

given.

• Invertibility of R : Existence of f∗ requires that R is non-singular. In practical

situations, this cannot usually be assumed. Therefore, an approximate solution to

(5) must in general suffice.

• Time-invariance of R and P : The channel output signal xn in Figure 6 is the

convolution between the channel c and the source signal sn. Even though sn is

usually a wide-sense stationary process, xn (and hence un) may not be, for example

if the channel is time-varying. Then, neither R nor P will be constant over time,

and no unique solution for all n exists. Thus, a time-varying equalizer is required.

• Computational complexity of calculating f∗ : The computational cost of

directly inverting R to obtain f∗ may be very high. An iterative solution method

is usually much more efficient.

With these motivations, some preliminaries on filter adaptation is given. The adaptive

N th-order FIR filter is represented at time n by the coefficient vector

fn � [f0n f1n · · · fNn]T ,

with the subscript n indicating that the coefficients are now time-varying. Adapting fn
is usually done in some algorithm of the form

fnew = fold + stepsize × gradient, (6)

where the ‘stepsize’ is a small scalar constant that determines how large or small an

adaptation step should be, and the ‘gradient’ is a vector specifying the direction and

amount of relative adjustment of the filter coefficients needed to minimize the error

function. If the negative gradient of the error function is used, adaptation by steepest

descent is obtained, i.e. the filter vector is updated in the direction in which the error

function decreases most rapidly. Using the mean square of en as defined in (1), the

gradient is obtained from (4). Note that calculating the right-hand side of (4) in practice

involves estimations of R and P. A more computationally efficient algorithm is obtained

if the instantaneous value of the squared error signal is taken as the error function,

ξ̂n � e2
n.
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Taking the partial derivative of ξ̂n with respect to fn gives the instantaneous gradient

∇̂n �
∂ξ̂n

∂fn
= −2enun.

Note that the subscript n is used to indicate that ξ̂n and ∇̂n are time-varying. If the

adaptive filter is iteratively updated for each n in the negative direction of ∇̂n, the

popular least-mean square, or LMS algorithm [3], [1] is obtained,

fn+1 = fn + μ2enun, (7)

which has a very simple structure. To a large extent, the performance of the LMS

algorithm depends on the size of the stepsize parameter μ. A short discussion on this

topic is therefore justified.

2.3 Choice of Stepsize Parameter

The size of the stepsize parameter μ controls the ‘length’ of each update step in general

algorithms of the form (6). In simple words, a large μ will rapidly move the filter vector

towards the optimum setting. However, there are tradeoffs between convergence rate and

performance, which is discussed shortly for the LMS algorithm.

Since the instantaneous estimate of the true gradient (4) is used in (7), the LMS

algorithm does not give a true steepest-descent minimization, but instead a so called

stochastic gradient algorithm, in which the gradient estimate is based directly on noisy

samples of en and un. The resulting mean-square error ξn can never be smaller than ξmin,

obtained by the optimum filter f∗. The misadjustment M of the algorithm is defined as

the ratio between the excess MSE (i.e. the difference between ξmin and ξn) and ξmin,

M �
ξn − ξmin

ξmin

.

It can be shown that, under general settings, M is proportional to the stepsize μ. Thus,

a smaller μ will in general result in a smaller misadjustment. Furthermore, if the noise

level in the signals is high, a small stepsize causes the LMS algorithm to behave as a

lowpass filter, averaging out the noise in the instantaneous gradient estimate.

To summarize, in general:

• Excessively large μ may make filter adaptation unstable, causing the coefficients

to diverge.

• Large μ gives fast convergence but large misadjustment.

• Small μ gives slow convergence but small misadjustment.

A good reference on the stability and performance of adaptive filter algorithms is [4].
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2.4 Extensions and Alternatives to The LMS Algorithm

Several extensions to the LMS algorithm have been developed, a handful are covered in

more or less detail in [2]. A few will be mentioned here. Despite the relative simplicity

of the LMS algorithm, some applications call for even lower computational cost. The

sign-error LMS, sign-data LMS or sign-sign LMS are algorithms that exhibit LMS-like

behavior, but at a substantially lower computational cost. If rate of convergence is

an issue, the recursive least squares (RLS) algorithm is an option, though it requires

relatively many computational operations. If one or several eigenvalues of the matrix

R are zero, the LMS algorithm may exhibit unlimited growth in some filter coefficients.

The leaky LMS algorithm is then suitable. There is usually a trade-off between low

computational complexity and high performance in adaptive algorithms.

3 Blind Deconvolution

The fundamental approach in adaptive filtering is to iteratively adjust the filter coeffi-

cients so that the filter output mimics some desired signal as much as possible. However,

in some situations, the desired signal may not be known or it may not be observable. The

problem of recovering a source signal s, distorted by some unknown channel c, is called

the blind deconvolution problem. This section will present some fundamental aspects of

adaptive blind deconvolution.

3.1 Introduction to Blind Deconvolution

sn

ŝn−Δxn un

zn (noise)

Commun.

channel

Adaptive

equalizer

Error

function

Unknown environment

∑ +

Figure 7: Blind adaptive channel equalization.

As an example of a blind deconvolution application, consider the modified channel

equalization model shown in Figure 7. Comparing this model with the adaptive equal-

ization model in Figure 6, notice that here the adaptive equalizer is adjusted based on
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an error function of the equalizer output alone. Hence, no training signal is used, and

therefore no error signal (as defined for the LMS algorithm) can be formed. The objective

is still to estimate the source signal s with the equalizer output, i.e. to undo the channel.

The training signal commonly employed in digital communication is sent either once

(at the start-up phase) or periodically to track time-varying channel characteristics. To

maximize information throughput, it might be desirable to avoid a periodic transmission

of a training sequence. This would motivate the use of blind equalization where the

equalizer is adapted solely based on its own output signal. One of the earliest articles on

adaptive channel equalization without training signals is [5] by Lucky from 1966.

Adapting a filter without a reference signal may seem less intuitive. Some basic ideas

of how an adaptive filter may be adjusted without a training sequence follows.

3.2 Basic Concepts

To develop the basic concepts of blind deconvolution, a probabilistic view of filtering of

discrete-time signals is useful. Specifically, the probability distribution of the samples xn

of a signal sequence {xn} will be of interest. First, some definitions are made.

Definition 1) The distribution Dx of xn is Gaussian with mean mx and variance

σ2
x if

xn : N(mx, σ
2
x),

that is, every sample of {xn} is drawn from a normal distribution.

A signal with a Gaussian distribution is said to be a Gaussian

signal.

Definition 2) A zero-mean sequence {xn} is uncorrelated or white if

E {xixj} =

{
σ2

x, i = j

0, i �= j
,

that is, if the samples in xn are mutually independent. A white

sequence with identically distributed samples is called an indepen-

dent identically distributed (i.i.d.) sequence.

Definition 3) The inverse c−1 of a linear system c is the system for which, when

applied in cascade with c, the global output signal equals the global

input signal up to a possible scale and delay.

Note: For practical reasons, Definition 3 differs from the classical notion of an ideal

system inverse, which gives unit scale and no delay.

Consider the model in Figure 8, in which two systems c and f are cascaded. The

signals sn, un and yn have distributions Ds, Du and Dy respectively. The following

properties apply under general assumptions [6] if {sn} is an i.i.d. sequence, and play

fundamental roles in the theory of blind deconvolution.
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sn

un

ync f

Figure 8: Two cascaded systems.

Property 1) If Du = Ds and c is a non-trivial system (not a simple gain), then

sn is Gaussian.

Property 2) If Dy = Ds and sn is non-Gaussian, then f is the inverse of c.

The relevance of these properties can be summarized:

• Property 1 states that if sn is non-Gaussian, then the output signal un will not

have the same probability distribution as sn.

• Property 2 then means that if a filter f can be found for which sn and yn have the

same distribution, then yn = αsn−Δ for some scale α and some delay Δ.

One strategy for performing blind equalization for systems like the communication chan-

nel in Figure 7 would therefore be:

Approach A: Assuming sn is a non-Gaussian i.i.d.

sequence with known distribution, adjust the equalizer

until the distribution of its output equals the distribu-

tion of sn.

This characterization of the blind deconvolution problem was suggested by Benveniste,

Goursat and Ruget in 1980 [6]. Multilevel digital communication is an example of an

application where complete knowledge of the source distribution is assumed.

Another view of the problem was developed in 1981 by Donoho [7], who defined a

partial ordering, measuring the relative ‘Gaussianity’ between random variables. As a

consequence of the central limit theorem, under general conditions, the distribution of a

non-trivial sum of independent, non-Gaussian random variables is always more close to

a Gaussian, than the distributions of the individual variables. In other words, filtering a

white sequence sn with a non-trivial filter makes the output signal ‘more Gaussian’ than

sn. An alternative to the previous approach would hence be:

Approach B: Assuming sn is a non-Gaussian uncor-

related sequence, adjust the equalizer until the distri-

bution of its output is as non-Gaussian as possible.
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Figure 9: Histograms of a source signal sn (left) and a corresponding time-dispersed channel

output signal un (right).

Notice that here, unlike in Approach A, the actual distribution of sn is not essential.

An illustration of the difference between input and output distribution of a channel

is shown in Figure 9. The left plot shows the histogram of a random sequence {sn} of

independent values of ±1, padded with zeros. The right plot shows the histogram of {sn}

filtered by a channel with a long impulse response. Note that the shape of the output

signal histogram resembles that of a Gaussian probability density function.

In a publication preceding [6] and [7], Wiggins investigated blind deconvolution of

seismic traces [8]. Knowing that the source signal had an impulsive (‘spiky’) appearance,

Wiggins proposed a method based on adjusting the deconvolution filter to make its out-

put as impulsive as possible. Although this idea is less formal than those proposed in [6]

and [7], it may be formulated as a third blind deconvolution approach:

Approach C: Assuming sn is a non-Gaussian signal

with an assumed distribution D̃s, adjust the equalizer

to make its output signal distribution resemble D̃s.

The common theme in all of the three approaches above is characterization of the

equalizer output distribution. The error function of the blind equalization problem in

Figure 7 should therefore be used to measure some feature of the equalizer output distri-

bution (e.g. how impulsive or non-Gaussian it is). Choosing a suitable error function for

a particular blind deconvolution problem can have a large impact on performance. As

the main theme of this thesis is blind deconvolution problems where the source distribu-

tion is not completely known, and where computational efficiency of the methods is of

importance, attention will be focused towards error functions that match these criteria.

3.3 Higher-Order Moments in Blind Deconvolution

The purpose of the error function as shown in Figure 7 is to measure some characteristic

of the probability distribution of the equalizer output. Using Approach B, the error

function should be a measure of how far from Gaussian the output distribution is. One
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such measure is the kurtosis of yn, defined as

K �
E {y4

n}

(E {y2
n})

2 ,

i.e. the normalized fourth-order moment of yn. Kurtosis was used in [8] under the name

‘Varimax norm’, and was shown in [7] to give consistent discrimination between a distri-

bution Ds and a (non-trivial) filtered version of it.

In 1980, Godard [9] proposed the use of dispersions of order p, defined as

D(p) � E {|yn|
p −Rp}

2

(p positive integer) for blind equalization of digital QAM (quadrature amplitude mod-

ulation) signals. D(p) is the quadratic deviation of the pth-order modulus of yn from a

dispersion constant Rp. Therefore, if minimization of D(p) is used as criterion for a blind

equalizer, its output will be driven towards a constant modulus. D(2) is known as the

widely used constant modulus algorithm (CMA) [10].

Both K and D(p) are based on central moments of yn. The pth-order central moment

of a zero-mean stochastic variable yn is defined as

Mp � E {yp
n} .

The base of CMA and kurtosis is the fourth-order central moment, M4. The choice of

fourth-order statistics is not entirely arbitrary, some reasoning behind this is given.

• In general, error functions with polynomial structures should use as low order as

possible. For example, the LMS algorithm uses the square of en as error function. A

variant called the least mean fourth (LMF) algorithm, using the fourth power of en,

has been proposed [11]. Although LMF may outperform LMS in certain situations,

using higher powers in the gradient estimate may have a negative impact on the

stability of the algorithm, for example if the signal-to-noise ratio is low [11].

• If the source sequence {sn} in Figure 7 is white, a whitening filter in the equalizer’s

place would produce an uncorrelated output. Finding the whitening filter can be

done using second-order statistics. However, this only determines the magnitude of

the unknown channel, the phase information can not be retrieved. If the channel is

known to be minimum phase, i.e. if all of its zeros are confined within the unit circle,

there exists a unique relationship between magnitude and phase. Unfortunately,

most real channels are not minimum phase, and hence second-order statistics are

typically insufficient for identifying c, and higher order statistics must be employed

[6], [12].

• Third-order statistics may allow identification of both magnitude and phase of

general channels, but they are still less commonly used compared to fourth-order
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statistics. The reason for this is that all odd-order moments of a signal with a

symmetric probability density function (PDF) are zero, and many of the signals

traditionally considered in blind deconvolution are symmetric (e.g. communication

signals). However, it should be noted that a filtered version of an asymmetric

signal tends to look more symmetric, which may lead to the false impression of

the source being symmetric if a mathematical or physical model of the application

is not known. As an example, consider a hammer hitting a piece of metal. The

actual hammer impact, which is hard to measure, is an impulsive, asymmetric

signal, but the ringings in the metal may appear symmetric if measured. The class

of asymmetric signals may therefore be much larger than traditionally assumed.

Consequently, blind deconvolution methods commonly use fourth-order statistics since

they impose no restrictions on channel phase characteristics or on the symmetry, or

asymmetry, of the source signal PDF.

3.4 Computational Costs of Error Functions

While kurtosis has benefits such as scale invariance in its argument, the associated gra-

dient equation is relatively complex. Godard’s proposed dispersions D(p) lead to sim-

pler gradient expressions, and are hence popular in applications where computational

efficiency is of concern. Adaptive equalizers are usually used in on-line (real-time) ap-

plications, where algorithms need to be simple. Moreover, if implemented on a digital

signal processor, arithmetic operations such as divisions and square roots typically re-

quire significantly more processing power compared to multiplications and additions. The

structure of D(p) is hence attractive for implementations requiring low cost.

3.5 Higher-Order Moments and Impulsive Signals

An interesting property of higher-order moments is their ability to measure how ‘heavy-

tailed’ the PDF of a signal is. A heavy-tailed PDF corresponds to a sparse (spiky) signal.

The pth-order central moment of a zero-mean stochastic variable y can be written

E {yp} =

∫ ∞

−∞

ypf(y)dy,

where f(y) is the PDF of y. Figure 10 shows sketches of two hypothetical probability

density functions along with the function y4. The left PDF corresponds to an impulsive

signal, and the right to a non-impulse signal. It is readily seen that the fourth-order

moment, i.e. the integral of the product between f(y) and y4 will be larger for the

impulsive signal. Hence, following Approach C for blind deconvolution, maximizing the

fourth-order moment of the equalizer output would be a suitable objective if the source

signal sn is known to be sparse. Compare with Figure 9, where the heavy tails of the
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y y

y4y4
f(y) f(y)

Figure 10: Hypothetical PDF’s of an impulsive signal (left) and a non-impulsive signal (right)

along with y4.

y y

y4y4
y3y3f(y) f(y)

Figure 11: Hypothetical PDF’s with heavy tails on one side only (left), and on both sides (right)

along with y4 and y3.

source signal’s PDF are not visually present in the output PDF due to the time dispersion

caused by the channel.

As a comparison, Figure 11 shows plots of two heavy-tailed PDF’s, one heavy-tailed

to one side (left plot), and one heavy-tailed to both sides (right plot), along with the

functions y3 and y4. From the left plot, it is seen that if the PDF is heavy-tailed to the

positive side only, the corresponding signal will have high fourth-order moment as well as

third-order moment. The absence of a negative heavy tail does not matter much, both

M4 andM3 will discriminate such a signal from one without any heavy tails.

The situation is different if a signal with both positive and negative heavy tails is

considered, as in the right plot in Figure 11. As mentioned earlier, the third-order

moment will be zero if the PDF is symmetric around y = 0. This can of course be

generalized to any odd-order moment.

The conclusion from this discussion is, that if the source signal is both asymmetric

and impulsive (i.e. if it has an asymmetric, heavy-tailed PDF), both odd- and even-

order moments (of order greater than two) can be used as error functions for blind

deconvolution. If the signal is symmetric, however, only even-order moments will work.
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4 Summary of Contributions

The three papers included in this thesis focus on adaptive blind deconvolution, or equal-

ization, of asymmetric, impulsive signals (i.e. signals with a PDF heavy-tailed to one

side). Of main interest is choosing a computationally simple error function that takes

advantage of the characteristics of such signals.

Paper A - Skewness Maximization for Impulsive Sources in Blind

Deconvolution

Authors: Patrik Pääjärvi and James P. LeBlanc

Reproduced from: Proceedings of the 6th Nordic Signal Processing Symposium, 2004

(NORSIG 2004), Espoo, Finland.

Paper A compares the use of kurtosis and skewness (normalized third-order moment)

for adaptive blind deconvolution of asymmetric impulsive signals. It is shown that the

function surface corresponding to skewness may have much fewer stationary points, com-

pared to that of kurtosis. This should in general give faster convergence of gradient

search algorithms if skewness is employed. These results are confirmed in an experiment

on blind deconvolution of recorded sound from a diesel engine. A visual comparison

between the function surfaces of skewness and kurtosis with respect to the coefficients of

a second-order filter is made, highlighting the simpler structure of the skewness function

surface.

Paper B - On-Line Adaptive Blind Deconvolution Based on Third-

Order Moments

Authors: Patrik Pääjärvi and James P. LeBlanc

To appear in: IEEE Signal Processing Letters, vol. 12, no. 12, December 2005.

Paper B considers adaptive blind equalization using higher-order central moments. A

comparison in terms of algorithm convergence rate and robustness to white Gaussian

channel noise is made between third- and fourth-order moments. It is shown that the

use of third-order moments should give faster convergence and better robustness to noise

compared to fourth-order moments. Blind equalization of a synthetic ultra-wideband

(UWB) channel with pulse-position modulation signaling is performed, demonstrating

the faster convergence of an algorithm based on third-order moments.



18

Paper C - Computationally Efficient Norm-Constrained Adap-

tive Blind Deconvolution Using Third-Order Moments

Authors: Patrik Pääjärvi and James P. LeBlanc

Submitted to: 2006 IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP 2006), Toulouse, France.

Paper C addresses the problem of increasing filter norm in gradient-ascent algorithms us-

ing third-order moments. The analysis of a previously known algorithm is extended using

averaging analysis, to determine under what conditions on the adaptation stepsize the al-

gorithm is stable in the filter norm. The algorithm is shown to be more computationally

efficient compared to traditional methods, maintaining approximately unit filter norm

over iterations. Experimental results, confirming the analysis, are supplied for adap-

tive blind equalization of a synthetic ultra-wideband (UWB) channel with pulse-position

modulation (PPM) signaling.

5 Conclusions

The results of this work indicate that asymmetry in source signals should be exploited.

The use of third-order moments allows this. Although traditional methods based on

fourth-order moments may give desired results, the benefits gained from using third-

order moments, which also emphasize skewness in the probability density function, can

be significant. The results from Paper C indicate that third-order moment maximization

might be suitable for on-line blind equalization in ultra-wideband communication, which

is currently the subject of much research.
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Skewness Maximization for Impulsive Sources in

Blind Deconvolution

Patrik Pääjärvi and James P. LeBlanc

Abstract

In blind deconvolution problems, a deconvolution filter is often determined in an itera-

tive manner, where the filter taps are adjusted to maximize some objective function of

the filter output signal. The kurtosis of the filter output is a popular choice of objective

function. In this paper, we investigate some advantages of using skewness, instead of kur-

tosis, in situations where the source signal is impulsive, i.e. has a sparse and asymmetric

distribution. The comparison is based on the error surface characteristics of skewness

and kurtosis.

1 Introduction and Problem Setting

sn h

un

f vn = ŝn

Figure 1: Block diagram of a deconvolution problem.

Fig. 1 shows a discrete-time deconvolution problem model. A source signal, sn, whose

characteristics are not completely known, is convolved with some unknown transfer func-

tion, h. The output signal, un, is then applied to a deconvolution filter, f , which, ideally,

reconstructs sn as ŝn = vn = un ∗ f .

For geophysical applications in which the source signal has a sparse distribution (i.e.

‘spiky’ appearance), Wiggins [1] proposed a method called minimum entropy deconvolu-

tion (MED). The approach was to use the knowledge that the source signal had a sparse

distribution, and try to find the deconvolution filter whose output distribution was as

sparse as possible. As a measure of sparseness, Wiggins proposed the ‘Varimax norm’

(similar to the more commonly known kurtosis) as a measure of the ‘spikiness’ of the

deconvolution filter output. The Varimax norm V for a filter output sequence vn of M
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samples is defined as

V =

M−1∑
n=0

v4
n(

M−1∑
n=0

v2
n

)2 . (1)

The MED method consisted of choosing an initial filter vector f and then iteratively

adjust the filter towards maximizing V .

Most deconvolution methods are based on some knowledge about the distribution of

sn. By using some suitable objective function O(vn) of the deconvolution filter output,

the filter can be adapted towards maximizing O(vn).

Donoho [2] generalized the theory behind minimum entropy deconvolution by consid-

ering a family of objective functions of a sequence vn of length M ,

Or
s(vn) =

1
M

M−1∑
n=0

|vn|
r

(
1
M

M−1∑
n=0

|vn|
s

)r/s
, (2)

of which the Varimax norm is a scaled version of O4
2(vn).

Donoho noted that, as a consequence of the central limit theorem, linear combinations

of identically distributed random variables become ‘more Gaussian’ than the individual

variables. Therefore, the transfer function output signal un will have a distribution that is

more nearly Gaussian than the distribution of sn. Any objective function should therefore

be used to reduce ‘the Gaussianity’ of the deconvolution filter output.

One suitable measure of Gaussianity for an MED implementation would be the kur-

tosis, Kv, of vn,

Kv = E{v4
n}/(E{v2

n})
2, (3)

where E{· } denotes expectation. Wiggins Varimax norm is a scaled approximation of

Kv. Thus, its objective would be to find the filter whose output has a kurtosis value far

from a Gaussian signal (the kurtosis value of all Gaussian distributed signals is 3).

However, for impulsive sources, the kurtosis may not perform well [3]. An alternative

choice of objective function might be the skewness, Sv, of vn, defined as

Sv = E{v3
n}/(E{v2

n})
3/2. (4)

Note that skewness maximization clearly would not be suitable for deconvolution of

symmetrically distributed source signals, since the skewness of any filtered version of

such a signal is zero.

Next, we compare kurtosis and skewness when used as objective functions for blind

deconvolution of impulsive signals. This comparison considers the error surface topolo-

gies, i.e. Kv and Sv as functions of the filter coefficients. The error surface topology will
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affect the convergence of MED algorithms. In particular, the number of stationary points

(i.e. points where the gradient of the error surface is zero) is an important characteristic,

as an excessive number of saddle points (stationary points having a non-definite Hessian)

‘stall’ gradient-based filter adaption.

1.1 Notation and Definitions

To enable a comparison between skewness maximization and kurtosis maximization for

blind deconvolution, we introduce notation of such gradient-based methods.

The deconvolution filter f used is assumed to be an FIR filter of order N , represented

by the column vector

f = [f0 f1 · · · fN ]T , (5)

where fm denotes the mth filter coefficient. The filter output at time n is given by the

convolution sum

vn =
N∑

k=0

fkun−k. (6)

A simple strategy for maximizing any objective function, O(vn), is to use a gradient

method wherein the filter coefficients are adapted iteratively towards increasing O(vn),

regarding it ultimately as a function of f , O(f). Denote the filter vector after i iterations

as f (i), the next filter vector will be chosen as

f (i+1) = f (i) + μ∇O(f (i)), (7)

where

∇O(f) =

[
∂O

∂f0

∂O

∂f1

· · ·
∂O

∂fN

]T

(8)

is the gradient vector of O(f), and μ is some fixed or variable stepsize.

The convergence of filter adaption algorithms based on gradient ascent, such as (7),

depends mainly on two factors: the choice of stepsize, μ, and the topology of the error

surface O(f).

The stepsize choice is an implementation issue. It must be chosen small enough to

allow convergence to a (possibly local) maximum (the stability issue), while choosing a

too small stepsize incurs excessive iteration steps. The error surface topology, however,

depends on the algebraic structure of the objective function used. The error surfaces of

common blind deconvolution objective functions are well known to be multi-modal (i.e.

to have multiple local maxima). The number of stationary points for kurtosis has been

explored [4], [5], but similar results for skewness has not been found.
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2 Comparison of Error Surface Topologies

An important characteristic of an error surface O(f) is the number of stationary points,

i.e. the number of points where the gradient, ∇O(f), is zero. More stationary points

generally means slower convergence of the gradient algorithm.

By writing out (3) as a function of the filter coefficients, we obtain

Kv =

E

⎧⎨⎩
(

N∑
k=0

fkun−k

)4
⎫⎬⎭⎛⎝E

⎧⎨⎩
(

N∑
k=0

fkun−k

)2
⎫⎬⎭
⎞⎠2 . (9)

Taking the gradient of (9) with respect to the mth filter coefficient, fm, and equating to

zero, we obtain the following; for m, i = 0 . . . N ,∑
i

f 3
i R

0
0

m−i

+3
∑
i�=j

f 2
i fjR

0
j−i

m−i

+
∑

i�=j �=k

fifjfkR
j−i
k−i

m−i

−σ2
vKv

∑
i

fiR m−i = 0, (10)

where

σ2
v = E{v2

n} = E

⎧⎨⎩
(

N∑
k=0

fkun−k

)2
⎫⎬⎭ , (11)

and the 2nd and 4th moments of un are defined as

R i = E{unun−i} R
i
j

k

= E{unun−iun−jun−k}.

The corresponding equation for the skewness is found similarly by writing out (4) as

a function of f , taking the gradient with respect to the mth filter coefficient, fm, and

equating to zero. We obtain the following; for m, i = 0 . . . N ,∑
i

f 2
i R

0
m−i +

∑
i�=j

fifjR
j−i
m−i−

√
σ2

v Sv

∑
i

fiR m−i = 0, (12)

where the 3rd moment of un is defined as

R
i
j = E{unun−iun−j}.

We note that the kurtosis-based stationary points (10) consist of a system of N + 1

polynomial equations in N + 1 variables (f0, . . . , fN). Each equation in the system has

the same monomial support and a total degree of 5. The Bezout upper bound on the

number of solutions (i.e. stationary points of the error surface) is then 5N+1.

Similarly, the skewness system of equations consist of N + 1 polynomials of total de-

gree 4, yielding a Bezout upper bound on the number of stationary points of 4N+1. Even

for moderate filter lengths (N + 1), the number of possible stationary points is consider-

ably smaller for the skewness error surface. This generally means faster convergence for

gradient algorithms of the form (7).
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Figure 2: Measurement data from a sound recording of a diesel engine.

3 Experimental Results

3.1 MED Algorithm Comparison

To support the view in Section 2, a simulation was done in which two block-mode versions

of the same MED algorithms, one using kurtosis and the other using skewness as the

objective function, were applied to real measurement data.

The data, shown in Fig. 2, consisted of a sound recording of a running diesel engine.

Referring to Fig. 1, the source signal sn is the explosions from the pistons. The transfer

function h is the engine block and housing through which the source signal propagates.

The source signal is thought to be impulsive, i.e. it has a sparse and asymmetric distri-

bution, although the measured signal appears symmetric and Gaussian, as seen in Fig.

2, after passing through the transfer function. The measurement data consists of un plus

added noise. The deconvolution filter length was chosen to be 2000.

The MED algorithm used in the experiment was based on the filter iteration (7).

Although the stepsize, μ, can be varied during iteration in several ways, a fixed stepsize

was used for simplicity. Each algorithm was run 35 times, using different unit-norm

initializations. Each filter was initialized with one large center tap, and the rest of the

taps picked randomly from a normal distribution, with a standard deviation of 2% of the

center tap magnitude. This is a reasonable approximation to the ‘customary center tap

initialization’ of blind deconvolution folklore.

4000 iterations were performed to allow both algorithms to converge. The stepsizes

for the two algorithms cannot be directly compared. In order to make a fair comparison,

the stepsize for skewness was chosen just small enough to keep almost all runs stable,

while the kurtosis stepsize was chosen so that about half of the runs became unstable

going into convergence. In this way, the convergence rate of the kurtosis algorithm was

essentially maximized for fixed stepsize.

As a comparison between the two algorithms, the kurtosis and skewness versus iter-

ation number was recorded for each run and plotted in Fig. 3. In Fig. 4, the averages

of all 35 runs are shown for both kurtosis and skewness. The two plots in Fig. 4 are

normalized to the same final value, since the magnitudes of the two objective functions

cannot be directly compared.
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Figure 3: Kurtosis (top) and skewness (bottom) versus filter iteration.
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Figure 4: Kurtosis (dashed) and skewness (solid) versus filter iteration.

As seen from Fig. 4, the MED algorithm using skewness is initially steeper and reaches

50% of its final value considerably faster than the kurtosis algorithm.

The results shown in Fig. 4 provide support for the results in Section 2, namely that

the error surface of skewness contains fewer stationary points, meaning less ‘flat’ regions

at which the MED algorithm might get stalled. Fig. 5 shows the deconvolution filter

outputs for one run of the kurtosis and skewness MED algorithms. Both algorithms have

deconvolved the source signal and produced a sparsely distributed signal.

3.2 Error Surface Topology Comparison for a 3-Tap Filter

As an illustrative comparison, the error surfaces for skewness and kurtosis for a low-

dimensional (3-tap) filter were compared visually. An impulsive signal was synthesized

and filtered through a ARMA(1,1) low-pass filter. The error surfaces for skewness and

kurtosis were then plotted over a set of unit-norm, three-tap deconvolution filters (i.e.

the unit sphere). Figures 6 and 7 show contour plots of the error surfaces for kurtosis
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Figure 5: Kurtosis (top) and skewness (bottom) deconvolution filter outputs.

and skewness respectively. Small arrows indicate the direction of the gradient, and the

stationary points are marked and classified as minima (×), saddle points (s) or maxima

(•). The figures show that the error surface of kurtosis has more stationary points than

the skewness error surface. As a check, it was verified that the vector fields satisfied the

Euler Characteristic of the sphere [6].

4 Conclusions

The use of skewness instead of kurtosis as the objective function for minimum entropy

deconvolution of impulsive sources has the benefit of an error surface with fewer saddle

points, allowing better convergence behavior for simple, gradient-based methods. This

has been demonstrated using both analytical and experimental results.
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Figure 6: Kurtosis error surface.
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Patrik Pääjärvi and James P. LeBlanc

Reformatted version of paper to appear in:

IEEE Signal Processing Letters, vol. 12, no. 12, Dec. 2005

c©2005, IEEE. Reprinted with permission.

35



36 Paper B



On-Line Adaptive Blind Deconvolution Based on

Third-Order Moments

Patrik Pääjärvi and James P. LeBlanc

Abstract

Traditional methods for on-line adaptive blind deconvolution using higher-order statis-

tics are often based on even-order moments, due to the fact that the systems considered

commonly feature symmetric source signals (i.e. signals having a symmetric probabil-

ity density function). However, asymmetric source signals facilitate blind deconvolution

based on odd-order moments. In this letter, we show that third-order moments give the

benefits of faster convergence of algorithms and increased robustness to additive Gaussian

noise. The convergence rates for two algorithms based on third- and fourth-order mo-

ments respectively are compared for a simulated Ultra-Wideband (UWB) communication

channel.

1 Introduction

Figure 1: The signal model of a general blind deconvolution problem.

Adaptive blind deconvolution is used for equalization or identification of unknown

systems when only the output of the system can be observed. Fig. 1 shows a discrete-

time signal model of a general blind deconvolution problem (the subscript n denotes a

time index). The object is to find the deconvolution filter f that approximately inverts

the system c with limited or no knowledge of either c nor the source signal sn. The

system output xn plus an additive disturbance zn gives the observed signal un. The un-

known, possibly time-varying system c may be either linear or non-linear with minimum-,
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maximum- or mixed phase.

1.1 Minimum Entropy Deconvolution

In general, due to filtration through c, the probability distribution of the system output

xn will be closer to a Gaussian than that of sn. This is a consequence of the central

limit theorem and allows for deconvolution based on measuring the ’Gaussianity’ of the

deconvolution filter output yn. Minimum Entropy Deconvolution (MED) methods are

based on using a score function Φ(yn) to measure the Gaussianity (or entropy) of yn. The

probability distribution of yn is then driven as far away from a Gaussian distribution as

possible, by adapting the coefficients of f . In general, f is a FIR (finite impulse response)

filter and all signals are assumed to have zero mean.

To measure the Gaussianity of a signal, score functions based on higher-order central

moments are commonly used. Such functions can typically be approximated by simple

polynomial functions of yn, making them specially suitable for on-line (real-time) appli-

cations, where computational efficiency is often of concern. Wiggins [1] proposed the use

of the Kurtosis (normalized fourth-order moment) of yn as a score function for MED.

Donoho [2] generalized the theory behind MED, and considered various types of score

functions, including central moments of order greater than two.

Godard [3] suggested dispersions of yn as score functions for blind equalization of

communication channels. The dispersion of order p ( p integer > 0 ) is based on even-

order moments of yn, and is defined as

D(p) = E
{
(|yn|

p −Rp)
2} , (1)

where Rp is a positive constant and E{·} denotes expectation. Choosing p = 2 leads

to the popular Constant Modulus Algorithm (CMA) [4], which is based on fourth-order

moments, similar to Wiggins original idea.

1.2 Symmetric and Asymmetric Source Signals

Traditional uses of blind deconvolution include linear equalization of communication

channels, deconvolution of seismic traces and dereverberation of acoustic signals. Such

applications are often assumed to feature symmetric source signals, i.e. zero-mean signals

with a probability density function (PDF) that is symmetric around zero. Since all odd-

order moments of symmetric signals are zero, most research focus in the field of blind

deconvolution has hence been directed towards even-order moments. Although symmetric

source signals dominate the field of applications for MED, asymmetric source signals, i.e.

zero-mean signals with asymmetric PDF’s (and thus with non-zero third central moment)

occur in a wide range of acoustic, biomedical and mechanical signals (for example, pulse

oximetry signals or hammer impacts). Asymmetry is also a feature of Impulse Radio

signals [5], a proposed signaling format for Ultra-Wideband (UWB) radio [6], [5], [7].
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In previous work [8], we noted that asymmetry in the source signal can be exploited

by using a score function based on third-order moments, instead of the common fourth-

order moments. The benefit of a lower-order moment is mainly a simpler score function

surface (regarding Φ(yn) as a function of the deconvolution filter coefficients). This will,

in general, give faster convergence of common gradient search algorithms.

In the work presented in this paper, we compare two simple on-line score functions

based on third- and fourth-order moments respectively. Since symmetric source signals

have zero odd-order moments, we restrict our focus to asymmetric sources. We demon-

strate that an on-line gradient search algorithm based on third-order moments should

in general benefit from faster convergence and increased robustness to additive Gaussian

noise, compared to algorithms based on fourth-order moments. The experimental results

are obtained from simulations of an indoor Ultra-Wideband channel with Impulse Radio

signaling.

2 Notation and Model Description

Referring to the discrete-time signal model in Fig. 1, we define sn and c as the unknown

source signal and unknown channel respectively. The sum of the channel output xn and

the disturbance zn is the observed signal un, which is the input to the deconvolution filter

f . For simplicity, we will from here on refer to Φ(yn) as an objective function of yn, and

the objective of the deconvolution problem is to find the filter f that maximizes Φ(yn).

In typical on-line situations, this is done iteratively through a gradient search algorithm.

The adaptive filter f is assumed to be FIR (finite impulse response) of order N . The

filter after r iterations is represented by the coefficient vector

f (r) =
[
f

(r)
0 f

(r)
1 . . . f

(r)
N

]T

. (2)

Using adaption by gradient ascent, f is recursively updated in the direction of maximizing

the objective function. The filter update rule becomes

f (r+1) = f (r) + μ∇Φ(f (r)), (3)

where μ is a positive stepsize of adaption and ∇Φ(f (r)) is the gradient of Φ with respect

to f (r),

∇Φ(f (r)) =

[
∂ Φ

∂f
(r)
0

∂ Φ

∂f
(r)
1

· · ·
∂ Φ

∂f
(r)

N

]T

. (4)

Filter iteration can be performed either on a sample-by-sample basis (general appli-

cations), or on a symbol-by-symbol basis (digital communication applications). If the

stepsize μ in (3) is small, f can be regarded as approximately constant in time, allowing

us to drop the superscript (r). We then define the filter output at sampling instant n as

yn = uT
n f = xT

n f + zT
n f = dn + vn, (5)
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with dn being the ’filtered signal’, vn the ’filtered noise’ and the signal vectors defined as

un = [un un−1 . . . un−N ]T, xn = [xn xn−1 . . . xn−N ]T and zn = [zn zn−1 . . . zn−N ]T. The

two objective functions we will compare are simply the third- and fourth-order central

moments respectively of the filter output yn;

Φ(3)(yn) � E
{
y3

n

}
, (6)

Φ(4)(yn) � E
{
y4

n

}
. (7)

The corresponding gradients with respect to f are

∇Φ(3) ∝ E
{
y2

n un

}
, (8)

∇Φ(4) ∝ E
{
y3

n un

}
. (9)

In on-line applications, where computational power is often limited, it is customary to

use an instantaneous estimate of the gradient in the filter update (3). This can be

obtained from the two objective functions (8) and (9) by simply dropping the expectation

operators.

From here on, we will make the following assumptions:

A1) All signals are real and zero-mean.

A2) sn is a non-Gaussian and asymmetric signal.

A3) The disturbance zn is a zero-mean, i.i.d. Gaussian noise process, independent of xn,

with variance σ2
z .

A4) The stepsize parameter μ in (3) is small, so that the filter vector f (r) can be regarded

as approximately constant in time when compared to the signals, i.e. f (r) = f .

A5) f is kept at constant (unit) norm during adaption, i.e. ‖ f ‖2 =
∑

i

f 2
i = 1.

Assumption A4 is customary in adaptive filtering theory and simplifies the averaging

analysis in the next section. Assumption A5 is necessary since increasing the norm of

any filter f increases both objectives (6) and (7), while leaving the Gaussianity of the

filter output unchanged.

3 Comparative Performance Analysis of 3RD- and 4TH-

Order Objective Functions

3.1 Objective Function Surface Topology

If the objective function Φ is regarded as a function of the deconvolution filter coefficients,

adaption according to (3) can be thought of as traversing a multidimensional function
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surface Φ(f) towards any local maximum points (under the constraint of unit filter norm).

The set of maximum points is a subset of the points on the function surface with zero

gradient ∇Φ(f), with the other set members being minimum points or saddle points.

Maximizing Φ(f) is therefore equivalent to finding a subset of solutions to

∇Φ(f) = 0. (10)

For a filter of order N , (10) leads to a system of N +1 non-linear polynomial equations in

the N +1 unknowns {f0, . . . , fN}. The highest degree of the polynomials in the equation

system (10) will set an upper bound on the number of solutions, i.e. the number of

stationary points on the objective surface. A large number of stationary points generally

implies a large number of saddle points, which can ’stall’ filter adaption.

Solving (10) for the third-moment objective function (6) leads to the system of equa-

tions ∑
i

f 2
i R

0
m−i +

∑
i�=j

fifj R
j−i
m−i = 0, (11)

for m, i, j = 0 . . . N , with the third moment of un defined as R
i
j = E{unun−iun−j}.

The highest polynomial degree of (11) is 2, which gives a Bezout [9] upper bound on the

number of solutions, i.e. the number of stationary points on the function surface, equal to

2N+1. The corresponding system of equations for the fourth-moment objective function

(7) is ∑
i

f 3
i R

0
0

m−i

+ 3
∑
i�=j

f 2
i fjR

0
j−i

m−i

+
∑

i�=j �=k

fifjfkR
j−i
k−i

m−i

= 0, (12)

for m, i, j, k = 0 . . . N , with the fourth moment of un defined asR
i
j

k
= E{unun−iun−jun−k}.

The highest polynomial degree of (12) is 3, giving a Bezout upper bound on the number

of solutions equal to 3N+1. Note that, in general, the moments of un in (11) and (12)

may depend on n (e.g. for a time-varying system c), despite the notation used. This is

not essential here, since a dependence on n only implies that the shape of the function

surface changes over time. The upper bounds on the number of stationary points are

still constant.

Even for moderate filter orders, the maximum number of stationary points on the

third-moment function surface is considerably smaller than on the corresponding fourth-

moment surface. As previously noted for off-line (block-mode) algorithms in [8], lower

polynomial order of score functions gives the benefit of a ’simpler’ objective surface,

which, in general, implies fewer saddle points. Since an excessive number of saddle

points can ’stall’ a gradient search, a simpler objective surface will therefore in general

allow for faster adaption of such algorithms. This is of special importance in applications

where the unknown system c is time-varying, and the deconvolution filter needs to ’track’

changes in the system.
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3.2 Gaussian Noise Effects on the Objective Function Surface

3.2.1 Objective Surface Analysis

In the presence of additive white Gaussian noise, as described in the model in Section

2, and with the filter output decomposed into the sum of dn and vn, as in (5), the

third-moment objective function (6) at time n becomes

Φ(3)(yn) = E
{
d 3

n

}
. (13)

Since all odd moments of the Gaussian disturbance are zero, (13) depends solely on

the filtered signal dn, and not on the disturbance zn. Thus, the function surface of the

third-moment objective function is preserved in the presence of Gaussian noise. The

corresponding expression for the fourth-moment objective function (7) in the presence of

Gaussian noise is

Φ(4)(yn) = E
{
d 4

n

}
+ 3

(
σ2

z

)2
‖ f ‖4 + 6 σ2

zE
{
d 2

n

}
‖ f ‖2 . (14)

The Gaussian noise introduces two additional terms to the ’signal’ (first) term. Under

Assumption A5, the second term does not depend on f , and will therefore not change the

location of the stationary points. The third term, on the other hand, which depends on

f through dn, will alter the location of the stationary points. Since the local maximum

points have moved under the influence of noise, the ability of the algorithm to invert c

has been reduced.

3.2.2 Gradient Analysis

With the filter output defined as in (5), the gradient of the objective function can be

expressed as

∇Φ = ∇Φ(d) +∇Φ(d,v). (15)

∇Φ(d) is the ’signal’ component of the gradient due to the filtered source signal dn. ∇Φ(d,v)

is the perturbation of the gradient caused by the Gaussian noise. Taking the gradients

of Φ(3) and Φ(4) with respect to f and separating them according to (15) yields

∇Φ(3) ∝ ∇Φ(3)(d), (16)

∇Φ(4) ∝ ∇Φ(4)(d) + 3
[(

σ2
z

)2
‖ f ‖2 +σ2

zE
{
d 2

n

}]
f+ 3 σ2

z ‖ f ‖2 E {dnxn} . (17)

At ’true’ local maximum points, the signal gradients ∇Φ(3)(d) and ∇Φ(4)(d) are zero. As

indicated by (13), the function surface of Φ(3) is not affected by noise. Therefore, an

instantaneous estimate of ∇Φ(3) (obtained by dropping the expectation operator in (8))

will be unbiased in the presence of Gaussian noise. For Φ(4), the noise causes a perturba-

tion of the gradient in the direction of E {dnxn}, causing a corresponding instantaneous

estimate of ∇Φ(4) to become biased. This adversely affects the algorithms ability to invert
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the unknown system, as indicated by (14). Although the perturbation in the direction of

f does not introduce a bias under unit-norm constraints, a large noise variance may have

a negative effect on the convergence rate of the algorithm on finite-precision machines.

4 Experimental Results From a Simulated Ultra-

Wideband Radio Channel

Wireless communication over Ultra-Wideband (UWB) radio channels has attracted in-

terest in recent years. One of the proposed signaling formats for UWB communication is

Impulse Radio (IR) [5], which consists of pulse-position modulated pulses of extremely

short duration, typically on the order of a nanosecond, transmitted without the use of

a sinusoidal carrier. The short pulses used give IR signals a bandwidth from near DC

to several gigahertz, giving them good material-penetrating abilities and resolvable mul-

tipath delays down to about 30 cm. To allow for multiple user access, an additional

pseudo-random time-hopping modulation scheme is used. This reduces the risk of catas-

trophic collisions with other IR transmitters, and also avoids interference with coexisting

narrow-band signals by ’spreading’ the spectrum of the signal [5].

Although the large bandwidth of IR signals makes them robust to fading, the large

multipath spread of a typical indoor UWB channel is likely to cause intersymbol inter-

ference (ISI) at higher data rates [7], [10]. The asymmetry of typical IR signal pulses

motivates the use of a blind adaptive linear equalizer based on third-order moment max-

imization to mitigate ISI.

A numerical experiment was conducted in which the two objective functions (6) and

(7) were used to implement two fractionally spaced, adaptive linear equalizers for an UWB

channel. IR signals with independent, identically distributed symbols were simulated

based on the model described in [5], using a pulse shape

ω(t) =
[
1− 4π(t/τm)2

]
exp

[
−2π(t/τm)2

]
, (18)

with τm = 0.2333, giving a pulse duration of about one nanosecond. The pulse shape is

shown in Fig. 2. The sampling interval was chosen to give each pulse a support of 15

samples, based on results from [11]. The IR signals used binary orthogonal modulation at

a bit rate of 10 Mbits/second. An UWB channel impulse response with a rich multipath

spread up to approximately 200 nanoseconds was synthesized with the aid of a recipe

from [12]. Although only a single transmitter was simulated, the interference from a

large number of adjacent transmitters can in many situations be modeled as a Gaussian

random process [5].

The receiver structure consisted of a filter matched to (18) followed by the linear

equalizers. The two FIR equalizers of order N = 400 were implemented with adap-

tion using third-order moment and fourth-order moment maximization respectively. The

equalizers were recursively updated at the symbol instants, using instantaneous estimates
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Figure 2: The signal pulse shape ω(t) used in the experiment. ω(t) =[
1− 4π(t/τm)2

]
exp

[
−2π(t/τm)2

]
, with τm = 0.2333.

Figure 3: Bit error rate versus adaption iteration for third-moment (◦) and fourth-moment (×)

objective functions, averaged over 13 runs. SNR per bit = 11dB.

of (8) and (9) respectively, starting from the customary ’center-tap’ initialization. The

individual stepsizes of adaption, μ(3) = 9.5 · 10−3 for the third-moment algorithm and

μ(4) = 6·10−3 for the fourth-moment algorithm, were chosen so that both algorithms gave

equal bit error rate performance at convergence. Fig. 3 shows the bit error rate versus

adaption iteration for the third- and fourth-order moment based objective functions. The

curves show the average results from 13 runs for a signal-to-noise ratio per bit of 11dB.

As seen in Fig. 3, the algorithm that uses the third-order moment objective function

converges approximately twice as fast as the corresponding fourth-order moment version.

This confirms the results in Section 3.1, namely that the lower order polynomial structure

of the third-order moment results in a ’simpler’ function surface. In general, this should

imply faster convergence of filter adaption, which is important for the algorithm’s ability

to track a time-varying channel. Since typical indoor UWB channels are indeed time-

varying, third-order moment based blind deconvolution, with its ability to exploit the

source asymmetry, seems to be a suitable option for UWB channel equalization.

5 Conclusion

We have compared the performance of two objective functions for adaptive blind decon-

volution based on third-order moments and fourth-order moments respectively. Asym-

metric source signals offer opportunities to use objective functions based on third-order
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moments, as an alternative to the commonly used fourth-order moments. Both the ana-

lytical and the experimental results indicate that a lower order objective function results

in fewer stationary points on the objective function surface, which in general allows for

faster convergence of on-line blind adaptive algorithms. The analysis of gradient estima-

tion in the presence of Gaussian noise further highlights the advantages of using third-

order moments. The faster convergence and increased robustness to additive Gaussian

noise makes third-order-moment based methods interesting candidates for blind adaptive

equalization in Ultra-Wideband communication.
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Computationally Efficient Norm-Constrained

Adaptive Blind Deconvolution Using Third-Order

Moments

Patrik Pääjärvi and James P. LeBlanc

Abstract

Third-order central moments have been shown to be well suited as objective functions

for blind deconvolution of impulsive signals. On-line implementations of such algorithms

may suffer from increasing filter norm, forcing adaptation under constrained filter norm.

This paper extends a previously known efficient algorithm with self-stabilizing properties

to the case of using a third-order moment objective function. New results herein use

averaging analysis to determine adaptation stepsize conditions for asymptotic stability

of filter norm.

1 Introduction

sn yn

un

c f

Error

function
Unknown environment

Figure 1: Model of a general adaptive blind deconvolution.

Blind deconvolution is used for identification or equalization of unknown systems in

situations where only the system output can be observed. A general discrete-time model

is shown in Figure 1, where n denotes a time index, sn the unknown source, and c the

unknown system. The object is to find the deconvolution filter f that approximately

inverts the unknown system, so that yn becomes an estimate of sn.

If the deconvolution filter f is continuously adjusted according to some error function,

we get an adaptive blind deconvolution setting. The error function (corresponding to the

error signal of the standard LMS algorithm) is related to the gradient of an objective
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function of the filter output yn. Adaptation of f is aimed at maximizing the objective

function.

Minimum Entropy Deconvolution (MED) methods [1], [2] are based on the idea that;

given an uncorrelated sequence sn, the probability distribution of un is closer to a Gaus-

sian distribution compared to that of sn. This consequence of the central limit theorem

allows for blind deconvolution by discriminating the distribution of yn from a Gaussian

distribution. An objective function for adaptive MED should therefore be a measure of

‘how Gaussian’ yn is. Higher-order central moments (order greater than two) are popular

measures of Gaussianity, especially the kurtosis (normalized fourth-order moment).

Apart from their ability to measure Gaussianity, higher-order moments can also be

used to describe how heavy-tailed the probability density function (PDF) of a signal is.

A signal with a heavy-tailed PDF has a ‘spiky’ appearance. This type of distribution

characterization allows for blind deconvolution without the assumption of the source

signal being a white sequence.

If sn is known to have a non-zero third-order central moment, this asymmetry allows

for exploitation of skewness as an objective function, as an alternative to kurtosis. The

skewness of a stochastic variable x is the normalized third-order central moment

S(x) =
E{x3}

(E{x2})3/2
, (1)

where E{·} denotes expectation. Since all odd-order moments of a signal with symmetric

PDF are zero, the use of odd-order moments such as (1) is restricted to asymmetric

signals.

In previous work, skewness has been used for blind deconvolution of impulsive signals

(i.e. asymmetric signals dominated by positive ‘spikes’). When compared to kurtosis,

skewness generally gives faster convergence of algorithms, and is less sensitive to additive

white Gaussian noise [3], [4]. This motivates why exploitation of signal asymmetry using

skewness may be preferable to kurtosis-based methods.

Due to the relative complexity of its gradient equation, (1) may not be suitable as

an objective function for real-time applications requiring minimal computational cost. A

more computationally efficient function is

O(x) =
1

3
E
{
x3
}

, (2)

a scaled version of the third-order moment of x. While easier to estimate than skewness,

the third-order moment is not scale invariant in x. That is, O(x) �= O(kx) for k �= 1. As

a consequence, any gradient ascent algorithm based on (2) will lead to a rapid increase

in deconvolution filter norm over iterations. In fact, problems of increasing filter norm

arise for general choices of objective functions when impulsive signals are deconvolved

[5]. Increasing filter norm causes numerical problems in implementations, especially on

fixed-point architectures. Therefore, a blind deconvolution algorithm maximizing the

third-order moment must work under constrained filter norm.
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An overview of several norm-constrained gradient adaptation algorithms can be found

in [6] and [7], mainly considering objective functions of the form

J = ±
1

p
E {|yn|

p} ,

where p is a positive integer. Since these functions are sign-invariant in their argument,

they are unable to exploit asymmetry in yn.

In this paper, one of the algorithms from [6] and [7] is studied when (2) is the specific

function to be maximized. The work in [6] and [7] is extended, using averaging analysis,

to determine conditions for asymptotic numerical stability. The computational cost of

this algorithm is compared to other commonly employed methods.

2 Notation

Referring to Figure 1, the deconvolution filter f is an adaptive, real FIR filter of order N ,

represented at time n by its coefficient vector fn � [f0n f1n · · · fNn]T. The norm of fn is

defined as the Euclidean, or �2-norm. Denoting the filter regressor by the vector of real

samples un � [un un−1 · · · un−N ]T, the filter output becomes the vector inner product

yn = f T
n un.

The objective function to be maximized is the third-order central moment of the filter

output yn,

O(yn) �
1

3
E
{
y 3

n

}
=

1

3
E
{(

f T
n un

)3}
. (3)

Throughout the remainder of this paper, the operation count associated with imple-

mentations of each of the presented algorithms are taken under the assumption that all

expectations of the form E{xn} are estimated by instantaneous values xn, as is customary

for on-line applications.

3 Adaptation Under Constrained Filter Norm

3.1 Adaptation Using Steepest Ascent

Adaptation by steepest-ascent is used to adjust the filter to maximize the objective (3),

fn+1 = fn + μ∇∇∇n, (4)

where μ is a small positive stepsize and ∇∇∇n is the gradient of O with respect to fn,

∇∇∇n �
∂O

∂ fn
=

∂O

∂ yn

∂ yn

∂ fn
= E

{
y2

n un

}
. (5)

Using (4), fn is iteratively adjusted until O attains a local maximum. Note that for any

number α and any vector f ,

O(α f) = α3O(f).
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Hence, for any filter vector f , we can improve O with the vector α f if α > 1. This

indicates that (4) will never converge since ∇∇∇n will never approach zero. Instead, the

norm of fn will rapidly increase over iterations. A simple way to deal with this is to

combine (4) with a frequent normalization procedure,

fn+1 ←
fn+1

‖fn+1‖
. (6)

While this would keep ‖fn‖ = 1 over iterations, the computational cost associated with

combining (4) and (6) is relatively large; on the order of 4N operations per iteration for

an N th-order filter. Therefore, alternative ways to do steepest ascent under constrained

filter norm are desired.

3.2 Orthogonal Gradient Decomposition

Recognize that a scaling α fn only results in a scaling α yn of the filter output signal; the

’quality’ of deconvolution is not changed. A reasonable approach would therefore be to

avoid updating fn in the radial direction.

Consider a decomposition of ∇∇∇n into ∇∇∇n = Rn + Pn, where Rn is the orthogonal

projection of ∇∇∇n onto fn,

Rn �
∇∇∇T

n fn
‖fn‖2

fn. (7)

Then modify the steepest-ascent algorithm to only update fn in non-radial directions,

fn+1 = fn + μPn = fn + μ [∇∇∇n −Rn] . (8)

This algorithm can be viewed as a search for local maximum points of the objective

function in the tangent space of the hypersphere ‖f‖ = ‖fn‖ at f = fn. Unlike the

standard algorithm (4), the modified version is expected to converge to points at which

Pn approaches zero.

Ideally, the search for local maximum points should be restricted to some hypersphere,

‖fn‖ = C, to ensure that the filter norm stays fixed. For (8), it is straightforward to show

that ‖fn+1‖ ≥ ‖fn‖. Hence, although the growth in ‖fn‖ will not be as rapid as for the

standard algorithm, this modified gradient ascent must be combined with an infrequent

normalization of fn. Even without normalization, the operation count per iteration for an

implementation of (8) is on the order of 4N for an N th-order filter. Hence, this algorithm

offers no computational savings.

3.3 Pseudo-Orthogonal Gradient Decomposition

A slight modification of (8) is achieved if the factor 1/‖fn‖
2 is neglected in (7). Define

R̃n �
(
∇∇∇T

n fn
)
fn and P̃n �∇∇∇n − R̃n,
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and do the filter adaptation as

fn+1 = fn + μ P̃n =
(
1− μ∇∇∇T

n fn
)
fn + μ∇∇∇n. (9)

As noted in [6] and [7], if ∇∇∇T
n fn > 0, this algorithm operates in a stable manner and

maintains approximately unit filter norm. Absolute convergence of the algorithm will,

however, ultimately depend on μ. From the definitions of the gradient (5) and the

objective function (3), we find that

∇∇∇T
n fn = E

{
y3

n

}
= 3O(yn), (10)

i.e. the quantity ∇∇∇T
n fn is proportional to the objective function to be maximized by the

algorithm. Although O(yn) > 0 cannot be guaranteed for all n, the algorithm will most

likely tend towards a positive objective over iterations for a well-conditioned problem.

Using (10), (9) can be rewritten as

fn+1 =
(
1− μ E

{
y3

n

})
fn + μ∇∇∇n, (11)

which exposes the algorithms simplicity. The computational cost of implementing this

algorithm with an N th-order filter is on the order of 3N operations per iteration. Fur-

thermore, (11) contains only multiplications and additions (i.e. no divisions), making

it highly suitable for implementation on fixed-point digital signal processors, which are

specialized at performing such arithmetic operations.

The following section analyzes the asymptotical behavior of this algorithm and derives

a sufficient condition on μ for numerical stability.

4 Asymptotic Stability of The Pseudo-Orthogonal

Gradient Decomposition Algorithm

To analyze the behavior of ‖fn‖ over iterations in the algorithm (11), define

εn � ‖fn‖
2 − 1 (12)

as the deviation of ‖fn‖
2 from unity at time n. Multiplying both sides of (11) with their

transposes and subtracting off one, gives after rearranging terms

εn+1 =
(
1− μ 2E

{
y3

n

})
εn + μ2‖P̃n‖

2. (13)

This expression describes how the norm of fn deviates from unity over iterations. The

goal is to derive sufficient conditions on μ such that εn → 0 as n→∞.

Note that (13) is a difference equation of the form

εn+1 = εn + μ g(n, εn, μ), (14)
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where g is a nonlinear, stochastic and time-varying function. Assuming that the stepsize

μ is small, (14) may be approximated by the averaged system

εn+1 = εn + μ gav(εn), (15)

where

gav(ε) = E {g(n, ε, 0)} | ε = constant . (16)

The conditions necessary for the approximation of (14) with the averaged system (15) to

be valid are essentially that, over a fixed time interval; gav is time invariant, |ε|, |gav| are

bounded, and g and the difference g − gav fulfill global Lipschitz conditions in ε and μ.

Refer to [8, Ch. 9] for details.

Although the expectation in (16) is taken with μ = 0, we choose to regard gav as a

function of both ε and μ to investigate how the stepsize affects the asymptotical behavior

of the algorithm. Comparing (13) with (14) gives

g(n, εn, μ) = −2E
{
y3

n

}
εn + μ ‖P̃n‖

2,

and the averaged system from (16) as

gav(ε, μ) = −2 Sy ε + μ P̃ 2,

where

Sy � E
{
y3

n

}
, (17)

P̃ 2 � E
{
‖P̃n‖

2
}

(18)

are assumed to be time invariant.

Although the time-invariance assumption on (17) and (18) is not realistic over a large

span of iterations (in fact, note that Sy is proportional to the objective function to be

maximized), they are approximately time invariant over limited number of iterations if

μ is small.

For small values of μ, (13) may thus be approximated by

εn+1 = (1− μ2Sy) εn + μ2P̃ 2. (19)

If 1− μ2Sy �= 1, (19) can be rewritten as

εn = (1− μ2Sy)
n ε0 +

μP̃ 2

2Sy

[1− (1− μ2Sy)
n] . (20)

Under the condition

|1− 2μSy| < 1, (21)
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the sequence (20) converges, and we get

lim
n→∞

εn =
μP̃ 2

2Sy

. (22)

Thus, the asymptotic deviation of ‖fn‖
2 from unity is proportional to the stepsize μ. In

general, μ 
 1, and so the algorithm (11), if stable, operates very close to unit filter

norm.

Although the limit (22) is taken under the approximation of Sy and P̃ 2 being time

invariant, it is suggested that (21) gives a sufficient condition for local convergence of εn

over a limited span of iterations, over which time invariance assumptions hold.

Condition (21) can be rewritten as

0 < μ Sy < 1. (23)

Since μ is positive by definition, Sy = E {y3
n} is required to be positive, which is expected

at convergence for a well-conditioned problem. Furthermore, Sy is expected to slowly

increase over iterations as the algorithm converges in fn. The quantity μ Sy could therefore

be monitored during adaptation, and the stepsize decreased if necessary, in order to insure

that (23) holds. This guidance on stepsize requires only a simple scalar multiplication

and check.

Note that (23) only concerns stability in ‖fn‖. A stepsize satisfying (23) is not guar-

anteed to give convergence to an fn that maximizes the objective.

5 Experimental Results

In a numerical experiment, the algorithm (11) was used to implement an adaptive blind

equalizer for a synthetic indoor Ultra-Wideband (UWB) communication channel with

Impulse Radio signaling [9]. Such signals consist of pulse-position modulated impulses

of extremely short duration, typically on the order of a nanosecond. Because of the large

multipath spread of typical indoor UWB channels, intersymbol interference (ISI) is likely

to occur at high data rates [10], [11]. Due to the impulsive nature of these signals, an

adaptive blind equalizer based on third-order moments might be used to mitigate the

effects of ISI.

The impulse response of an indoor UWB channel with a rich multipath spread of

approximately 200 nanoseconds was synthesized with the aid of a recipe from [12], with

additive white Gaussian noise at a signal-to-noise ratio per bit of 15dB. The Impulse

Radio signals used binary orthogonal modulation at a bit rate of 10 Mbits/second, using a

sampling rate of 15 samples per nanosecond. Equalizers of order N = 400 were generated

using (11) for three different stepsizes over 1000 adaptation iterations. All expectation

operations in (11) were estimated using instantaneous values. Figures 2 and 3 show,

respectively, the resulting absolute deviation of ‖fn‖ from unity and skewness versus

iteration number. The plots show averaged results over 20 independent runs.
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Figure 2: Absolute deviation of ‖fn‖ from unity versus iteration number.
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Figure 3: Estimated skewness of filter output versus iteration.

As seen in Figure 2, the deviation from unit norm at convergence increases with the

stepsize, confirming the result (22) from Section 4. Figure 3 shows the convergence of the

algorithm in terms of skewness. Note that a larger stepsize leads to faster convergence,

but results in a smaller asymptotic skewness.

Experimental results also indicate that the stability condition (23) indeed can be

monitored to indicate instability in ‖fn‖. However, for stepsizes that give convergence in

fn (as seen in Figure 3), (23) is typically satisfied by a large margin. Thus, for reasonable

choices of μ, the algorithm should be stable in ‖fn‖.

6 Conclusion

A computationally efficient algorithm for constrained-norm gradient acsent has been

studied for blind deconvolution. The results indicate that the algorithm maintains ap-

proximately unit filter norm for reasonable choices of adaptation stepsize. The condition

on adaptation stepsize that insures a stable filter norm is trivial to calculate and verify.

Therefore, this algorithm provides a way to perform blind deconvolution without the

problem of increasing filter norm. The small computational cost, involving only multi-

plications and additions, makes it well suited for on-line implementation on fixed-point

digital signal processors.
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