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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let f be a real-valued measurable function on K. We define the distribu-
tion funetion of f by fu(A) = {z € R:|f(z)| > A} for each A > 0, (where
|| denotes Lebesgue measure). The non-increasing rearrangement of f is

defined by
ft) =inf{s > 0: fu(s) <}, t€]0,00). 1)

We further denote
1 t
=7 [ e te)
0

When w is a non-negative measurable function on (0, 00) which is not iden-
tically zero, we say that w is a weight. Note that our definition here (which
is consistent with the usage in [15], and in essentially all subsequent papers
cited below) differs from another frequently used definition in the context
of many kinds of function spaces, which requires w to be strictly positive.

Definition 1.1 Let p € (0, 00), let w be a weight, and let W(z) = fot w(s) ds.
Suppose that W (t) < oo for all ¢ > 0. We define four types of function spaces

on R by

AP (w) = {f measurable : || fllasqw) = (fow (F*@)?P w(t)dt)]/p < oo} :
AP (w) = {f measurable : || f||p.co(w) = SUPp<icoo /()W /P(E) < 00} ;
I'?(w) = {f measurable : || flre(y) = (fow (F** ()P w(t) a!t)llp < oo} .

IPeo(w) = {f measurable : [ lrree(u) = SUPp<s<o0 f** ()W VP(2) < 00} .

The spaces AP(w) were introduced by Lorentz in 1951 in [15]. Spaces whose
norms involve f** appeared explicitly for the first time in Calderdén’s paper
[4]. In [21] Sawyer considered TP(w) for arbitrary weights, in connection
with the study of certain duality problems concerning the spaces AP(w).

The spaces AP (w) and I'P**°(w) are called Marcinkiewicz spaces or weak
Lorentz spaces (see [14], [10]; see also [7], [8], [9], [5] and [6]).

Lorentz [15] proved that, for p > 1, || f||Ar(w) is a norm if and only if w is
non-increasing. The class of weights for which || f]|s»(w) is merely equivalent
to a Banach norm is however considerably larger. In fact it consists of all
those weights w which, for some C and all ¢ > 0, satisfy

tp/tm  Pw(z)dz < O/O:w(m) dz \;rhen pE (1,-00), (2)



([21, Theorem 4], see also [1}), or
1 .7 C
;fW(I)d$S;f w(z)dt for0<s<t whenp=1 (3)
0 0

({5, Theorem 2.3]). It is also known that, for p € [1,00), the space AP(w) is
equivalent to a Banach space if and only if the Hardy-Littlewood maximal
operator acts boundedly from AP(w) to AP*(w) ([8, Theorem 3.3], [9, The-
orem 3.9}, [5]). Furthermore, for p > 1, this is equivalent to A?(w) = I'P(w)
([21]).

In [10, Th. 1.1] (see also [7, Corollary 2.2], [12, p. 6]) it was observed
that the functional || f|{Ar(w),0 < p < 00, does not have to be a quasinorm.
It was shown that it is a quasinorm if and only if the function W satisfies
the Ag-condition ie.,

W(2t) < CW(t) for some C > 1 and all ¢ € (0, 00). 4)

There are a number of natural and important function spaces which
are not normable, such as Weak L' and H? and LP and LP9 for p < 1.
They exhibit various different behaviours with respect to the existence of
non-trivial dual spaces.

In this note we encounter different, perhaps more exotic behaviour in
the case of generalized Lorentz spaces. It can happen that the sum of two
functions in the “space” is not in the space.

Obviously f € AP(w) implies that Af € AP(w) for every A € R. However
in general, perhaps surprisingly, A?(w) is not a linear space. In this note we
shall give necessary and sufficient conditions for AP(w) to be a linear space.

In fact other function spaces that are not closed with respect to addi-
tion sometimes appear quite naturally in analysis. One example going back
to the 1930’s is the Orlicz class L¥ = {f measurable : [po(|f(t)])dt <
oo}, which is linear if and only if ¢ satisfies the Aj-condition (see [18]
where this was proved even in the case where g is only a Baire function).
The spaces of functions of bounded -variation BV, = {f : [e,b] = R :
supp > p=1 (| f(zk) — f(zk-1)]) < o0} where the supremum is taken over
all partitions P of [a,b] are linear spaces if and only if y satisfies the Ag-
condition near zero (see [19]; cf. also [20]). The Wiener spaces ([22])
{f measurable : imp_;eq (7 fTT |F(2)|Pdt)}/? < oo}, sometimes also called
the spaces of bounded power signals, are not linear spaces ([17]). Note that if
instead of “limit” we take either “limes superior” or “supremum” the corre-
sponding spaces will be linear (they are classical Besicovitch-Marcinkiewicz
or Stepanoff-Weyl spaces). The “Weak L®” space W = {f measurable :

f* is finite and ||f|lw := sup,so[f**(t) — f*(t)] < oo} of Bennett, DeVore
and Sharpley ([2]; see also [3]) and the space Wy, determined by the “norm”

1

o0 xrly _ P P
I£llw, = (j(; (F(3) tf (t) dt) < 00,

defined recently in [16] in connection with sharp limiting Sobolev embed-
dings, are also examples of spaces that are not linear. The latter two spaces

are of special interest in interpolation theory.
Before formulating and proving our main result it is convenient to present

a lemma which will be needed later.
Lemma 1.2. Suppose that w and v are non negative meesurable functions

on (0,00) and a is a positive number such that w(t) = 0 for a.e. t € (0,a)
and w(t) = v(t) for all ¢ > a, and the functions V() = fotv(:c)d:c and

W(t) = j; w(z)dz are finite for allt >0 .
Let f: R = R be a measurable function. Then the following are equiva-

lent:
(i) f € AP(w).

(ii) min {X, [f|} € AP(v) for some positive number A.
(iii) min {}, |f]} € AP(v) for every positive number A.

Proof. Clearly we can assume without loss of generality that f is non nega-

tive.
It follows easily from the definition of non increasing rearrangements

and distribution functions that, for each constant A > 0, the non increasing
rearrangement of the function min{f, A} satisfies

(min{f, A})* (t) = min {f*(t), A} for each ¢ > 0. (5)

Now suppose that f € AP(w). If f*(a) > 0 we choose A = f*(a). If
f*(a) = 0 then we can choose A however we wish, for example A = 1. Note
that in this latter case we have f*(t) = 0 for all ¢ € [a,00). In both cases

we have

/m(mitl{f*(t),A})pv(t)dt < fﬂ )\Pv(t)dwfm (F*(2)P w(t)dt
0 0 a
< MV(a) + ”f"ip(w) < 00.

This shows that (i) implies (ii).



Now suppose that min{f, A} € A?(v) for some g > 0. Then obviously
min{f,A\} € AP(v) for all A € (0,)]. For each A > Ap, let A= {t > 0:
f*(t) > Ao} and B = (0,00)\A. Then we have

Imingf, M2y = [ minF(6) Aottt
< f APu(t)dt + f min{ f*(£), Jo}Pu(t)dt.
A B -

The integral over B is of course finite. The set A must be of the form
(0, &) for some & € (0,0c]. If @ < oo then the integral over A equals AV (a)
and is finite. If @ = oo then min{f*(t), Ao} = Ao for all ¢ > 0 and the
assumption that min{f, Ao} € AP(v) implies that [;° v(t)dt < oo. Thus in
both cases we deduce that min{f, A} € AP{v), which shows that (ii) implies
(i)
Finally, suppose that f satisfies condition (iii). If f*{a) = 0 then obvi-
ously [|fliarw) = 0. If f*(a) > O then we have that min{f, f*(a)} € AP(v).
By (5) we have f*(t) = (min{f, f*(a)})* (¢) for all ¢t > a, and so

IF I Rp ) = /:o ((min{f, f*(a)})" (1))" w(t)dt < [[min{f, f*(a)}}1r() < 00

Thus in both cases we deduce that f € AP(w), which shows that (iii)==(i)
and completes the proof of the lemma.

Remark 1.3. Let us briefly consider what would happen had we not im-
posed the condition that W is finite. The four spaces introduced in Defini-
tion 1.1 could of course still be defined without this condition. If W (t) = oo
for all t > 0, then each of these spaces is trivial, i.e., it contains only the
zero element. In the remaining case, where

0 < tp =sup{t > 0: W(t) < oo} < o0,

the space I'"*°(w) is again trivial, and neither A?(w) nor A?**°(w) is a linear
space. To see this, take f = (o) and g(s) = f(—s) with 40/2 < t; < 1.
Then f and g are both in AP(w) and AP™(w) but (f + g)*(s) = f*(s/2) =
X(0,2t,)(8) is not in either of these spaces. Note that W does not satisfy the
Ag-condition.

We stress that (except during the brief discussion in the preceding re-
mark) we invoke Definition 1.1 throughout this paper and so always assume
that W (t) is finite for every ¢ > 0.

Here now are our main results:

Theorem 1.4. The following are equivalent:

(i) AP(w) is not o linear space.

(ii) There erists a sequence of positive numbers i, tending either to 0 or
to oo, such that W(2t,) > 2"W (t,) for alln € N.

(iii) There ezisis a sequence of positive numbers t, such that W(2¢,) >

"W (t,) >0 foralln e N,

Corollary 1.5. The following are equivalent:
(i)' AP(w) is a linear space.
(ii) There ezist positive constants o, § and C such that W(2t) < CW (¢)

forallt<aandallt> B.
(iii)’ There ezists o constant C' such that one of the following two con-

ditions hold: Either
(iii-A)’
W(2t) < C'W () (6)

for allt >0, or

(iii-B)’ W (t) = 0 on some interval (0,a) and (6) holds for all t in some
interval (b, 00).

The conditions for linearity of Marcinkiewicz spaces AP*°(w) are the
same as for linearity of AP(w). Below we formulate only one condition.
Notice that (iii) of Theorem 1.4 is the same as (ii) below.

Theorem 1.6. The following are equivalent:
(i) AP*®(w) is not a linear space.
(i) There ezists o sequence of positive numbers t, such that

W (2tn)
—_— , TN — oo
W(ta)

2. PROOFS

Joint proof of Theorem 1.4 and Corollary 1.5. We begin with the easy proof
that (i) implies (iii). If (ii) holds and the sequence {t,} tends to oo, then
W(2t;) > 0 and so W(t) > 0 for all £ > 2¢;. If the original sequence
{tn} does not satisfy W(t,) > 0 for all n then we simply replace it by a
subsequence of numbers in [2¢;,00) and we are done. Alternatively if (ii)



holds and the sequence {t,} tends to 0, then, since W (2t,) > O foralln € N,
we deduce that W (t) > 0 for all positive ¢ and we obtain condition (iii).

Let us next prove that (iii) implies (i). Given a sequence {¢,} satisfying
(iii) we let f =3 72, AnX[o,t,) Where

1 -
Ay = e
PP (W ()P

Clearly f * = f. Consequently, in the case where p < 1, we have

oo [ X P
1wy = (z_;,\nxm,;“)(t)) w(t)dt

< /0 (E «\ﬁxlo,tn)m) w(t)dt

[+ ] e o] 1
= Z}AﬁW(tﬂ) = Z] —m <o
n= n=

On the other hand, if p > 1 we have, by the Minkowski inequality,

”f“AP(w) = (./0 (Z /\nX[O,t“)(f)) 'w(t)dt)
n=1

oo .

(fo (A"xlﬂatn)(t))pw(t)dt) 7

o
1
An (W(tﬂ))lfp = Z m < 00.

1 n=1

]9

<

3
Il
LA

M

3
I

Thus, in both cases, f € AP(w). The function g defined by g(z) = f(—=z)
satisfies g* = f* and so it too is in AP(w).

Now consider the function h = f + g. Its distribution function is twice
the distribution function of f and so h*(t) = f*(¢/2) = 3°72; Anx[o,2t,) (1)-
So, for each m € N, we have that

oo [ X p 00
”h”f\p(w) =/0 (Z AnX[U,?tn)(t)) w(t)dt 2/(; A%X[G,th)(t)w(t)dt
n=1

1 W(2tm) 2™

— 'p —
Ml (Btm) = T W tm) ~ mP

Taking the limit as m tends to oo, we see that h ¢ AP(w). This shows
that AP(w) is not a linear space and completes the proof that (iii) implies
{i).

1t remains to show that (i) implies (ii). We will do this indirectly, i.e.
by showing that if (ii) does not hold then (i) does not hold. In the course
of doing this we will also prove some of the implications of the corollary.

Suppose then that (ii) does not hold. Consider the sets E, defined by
E,={t>0:W(2t) > 2"W(i)}. They of course satisfy Ent; C E,. The
fact that (ii) does not hold means that there exist a pair of positive numbers
« and 8 with a < § and some integer N = N(a, ) such that E,, C (o, f)
for all n > N(a,B). This establishes that condition (ii)’ of the corollary
holds for any choice of a and 3 as above, provided we choose C = 2N(@#),

Thus it is clear that, if we can show that conditions (i)', (ii)" and (iii)’
of the corollary satisfy the two implications (i)’ == (iii)’ and (iii)’ == (i)',
then this will certainly complete the proof that (i) implies (i) and so will
complete the proof of the theorem. At the same time we will have completed
a considerable part of the proof of the corollary.

Accordingly we shall now prove that (i)’ ==(iii)".

Let a, B and C be positive constants for which (i)’ holds. If 8 < «
then W (2t) < CW(t) for all ¢ > 0, i.e. W satisfies condition (iii-A)" with
C' = C. Thus we can suppose that @ < 8. Let us first consider the case
where W(t) > 0 for all ¢ > 0. Then W(2t)/W (t) is a continuous function
for all £ > 0 and is therefore bounded by some constant C; on the interval
| ). Lt follows that W(2t) < max{C.C,}W(¢) for all ¢ > 0 so again we
have obtained condition (iii-A)’, this time with C' = max{C, C1}.

It remains to consider the case where W (¢) = 0 for some positive ¢. In
this case there exists tp > 0 such that W(t) = 0 if and only if ¢t € (0,tp]-
Thus we obtain condition (iii-B)’ for a = tp, b= 8 and ¢’ = C.

Our final step will be to show that (iii)’ =(i)’, i.e., that either of the
conditions (iii-A)" or (iii-B)’ is sufficient to imply that AP(w) is a linear
space. In the case of condition (iii-A)’, which is exactly the Az-condition
used in [10, Th. 1.1} (see also [7], [12]), we can apply [10, Th. 1.1] (see also
[7, Corollary 2.2, p. 482], [12, p. 6] ) to obtain that [|-||;»(,, is & quasinorm,
which in turn immediately implies that A?(w) is a linear space.

If condition (iii-B)’ holds, then we need a somewhat longer argument.

We define an auxiliary weight function v : (0, 00) — [0,00) by v(t) = 1/a
for ¢ € (0,a] and v(t) = w(t) for t € (a,00). Let V() = f(;fu(:c)dw. We
claim that V satisfies the Aj-condition. To prove this claim we first note
that V(t) > 0 for all positive t. Furthermore, for all t € (0,a/2] we have



V(2t)/V(t) = 2. So, by obvious continuity considerations, it will suffice to
show that V(2t)/V(t) is bounded on the interval [y,00) for some v > 0.
There are two cases to be considered. Suppose first that W is bounded, i.e.
W(t) < M for all £ > 0. Then, for all t > v, we have

vt _1+W() 1+M
Vi)~ 1+W(E) - 1

Alternatively, if lim;_,, W(£) = oo, we can choose ~ sufficiently large so
that W(v) > 1 and 4 > b. Then, for all ¢ > ~, we have

V(21) 1+ W(2t) _ W(y) + W(2t) _ 2W(2t) ,
Ve 1AW S W S we S

This proves our claim. Consequently it also shows, again by [10, Th.
1.1] (see also [7, Corollary 2.2], [12, p. 6]) that AP(v) is a linear space. We
are now ready to use Lemma 1.2 to deduce that AP(w) is also a linear space:

Let f and g be arbitrary functions in AP(w) . We need to show that
[+ g € AP(w). Clearly |f| and |g| are also in A?(w) and it will suffice to
show that |f|+|g] € AP(w), i.e. we can assume that f and g are non-negative
functions. By Lemma 1.2, the functions min{f,1} and min{g, 1} are both
in A?(v). Furthermore, it is easy to check that

min{f + g,1} < 2 (min{f,1} + min{g, 1}). (7

(Obviously (7) holds at the points where f + g < 1, and if f + g > 1 then
at least one of f and g must be greater than 1/2 which again ensures that
(7) holds.) We deduce that min{f + g,1} € AP(v) and another application

of Lemma 1.2 shows that f + g € AP(w).
This completes the proof of the theorem. But we still need to obtain one

last implication in the corollary, namely that (i)’ = (ii)’.

Again we shall use an indirect approach. showing that if (ii)’ does not
lhold then neither does (i)":

Indeed if (ii)’ does not hold, then, for each positive o, # and C, there
must exist ¢ = t{a, 8,C) € (0,a) U [B,0c) such that W(2¢) > CW(t). In
particular the sequence {¢(1/m,m, 2™)}men, must have a subsequence with
the properties stated in condition (ii) of the theorem. We have already seen
that this implies (iii) which in turn implies (i), i.e. that AP(w) is not a linear
space, exactly as is required to complete our proof.

Proof of Theorem 1.6. Clearly, the parameter p is immaterial here so we can
with no loss of generality assume that p = 1. Suppose that (ii) is satisfied.

10

Then, as shown in the proof of Theorem 1.4, there exists a monotone (either
increasing or decreasing) sequence {¢,} such that W (t,) > 0 and

W (2tn)
Wt , N —*0co
We set
=1
t) = .
f( ) ; W{tﬂ)X[sn,tn)
where

] when {¢,} is increasing;
s = . -
" tot1 when {{,} is decreasing,

and tg = 0. In both cases,

neEN sn<t<in

= sup f*(sn)W(ta) = 1,
neN

I laree iy = ey ()W (t)=sup sup [fT()W ()

while, for h as in the proof of Theorem 1.4,

i *
lAllarco () = sup f'(E)W(i)z sup [*(t)W(2t)
0<t<oo 0<i<oo
=sup sup [f*(t)W(2t) =sup [ (sn)W(2t,)
neEN su<t<in neN
_ W(2t,) .
T W (ta) ’

The proof of the converse implication is analogous to that in Theorem
14. ‘

3. EXAMPLES

Ezample 8.1. We will find a measurable function w : (0, 00) — [0,00) such
that the two functions W (z) = [ w(t)dt and ®(z) = [° ¢ Pw(t)dt are both
finite for all z > 0 but the set AP(w) = {f : [° f*(t)Pw(t)dt < co} is not a

linear space.
These conditions on W and ® are apparently necessary and sufficient
to ensure that the space I'P(w) is non-trivial so it seems relevant to impose

them here.

11



Initially the w which we construct can assume the value 0. But, as we
shall see, it is easy to modify this to an example where w is strictly positive.

Here is the construction:
Let us first define a sequence of positive numbers wy, recursively by

setting wy = 1 and
wy, = (2" — 1) (w1+w2+...+wn_1) 7 (8)

for all n > 1. Then we define a second sequence of positive numbers s,
recursively by setting s; = 2 and, for each n > 1,

8p = max {23,1_1,11),11/”2"/” + l} . (9)

The function w : (0,00) — [0,00) is defined by w = 3071 WnX(s,—1,s4]"
It follows from (9) that wy,/(sp — 1)? < 27" and so

8(0) = fum t~Puw(t)dt =§wn f:

o0
tPdt < Z wp(sy, —1)7P < 1.
1 a=1

Obviously we also have [ w(t)dt < oo for each z > 0. Thus w satisfies
the conditions mentioned above which ensure that I'P(w) is non trivial.
We claim that for this particular choice of w, the set A?(w) is not a linear

space.
To show this let us first observe that, by (9) we have s,_1 < 5,/2 < 5,—1
and so

Sn—1 5n/2
f w(t)dt = / w(t)dt = wy +wy + ... +wp_
0 0

It follows, using (8), that

Sn
Wi(sn) = -/ w(t)dt = wy +we + ... + Wp—1 + wn
0
sn /2
Bty g, z"/ w(t)dt = 2°W (s/2).
0

Thus the sequence {t,} given by {, = 5,/2 tends to co and satisfies

W(2t,) = 2°W (tn).

12

In other words w satisfies condition (iii) of Theorem 1.4. Consequently
AP(w) is not a linear space.

To get another less exotic example, i.e. where the weight function is
strictly positive, we simply replace w by w+u where u is any strictly positive
function for which the above function f satisfies fﬂm F(#)Pu(t)dt < oo and
7 s7P(w(s) + u(s)) ds < oo.

Ezample 3.2. Let w = X[1,00)- Then AP(w) is not quasinormable but is a
linear space.

4. ORLICZ-LORENTZ SPACES

To conclude this note we present a result for Orlicz-Lorentz spaces which
is similar to Corollary 1.5. Let ¢ : [0,00) — [0,00) be an Orlicz function,
that is (0) = 0, ¢ is strictly increasing and limy 00 p(u) = 00. As in
Definition 1.1, let w : (0,00) — [0,00) be a weight such that W is finite
everywhere. By Ay, we denote the Orlicz-Lorentz space [11] defined as

follows:

o0 . .

Apw = {f measurable : I,(Af) :=f @ (AF*(t)) w(t) dt < oo for some A > 0} .
0

Observe that if ¢(u) = u? then Ay, = AP(w), and if the weight function w
is constant then A, becomes an Orlicz space ([3], [18]).

(Note that if W were to be permitted to assume infinite values then
Ay, would either be trivial, or not a linear space, by essentially the same
arguments as given in Remark 1.3 for AP(w).) We will see that the A,
condition (cf. (1.4)) plays an important role here, not only for the function
W, but also for the function .

Theorem 4.1. Assume that ¢ satisfies the Ag-condition and that w is
strictly positive. Then Ay, is @ linear space if and only if W satisfies the
As-condition. :

Proof. Since w(t) > 0 we also have W(t) > 0 for all t > 0. If W does not
satisfy the Ag-condition then there exists a sequence {t,}52; C (0, c0) such
that W (2t,) > 2"W(t,). We will show that this implies that A, ., is not
linear. In view of the assumption that W is finite and thus continuous, by
passing, if necessary, to a subsequence we can assume that {¢,} converges
either to zero or infinity. We shall only consider the case where t, — oco.
The other case can be treated analogously. Without loss of generality we

13



can also assume that 2t,_; < t, for all n € N, and also for n = 0, after we
define #p = 0. For

1
R o (. N
=" (o)
define
o
fit)= Z AnX[tn_1,tn) (£)-
n=1

Obviously f* = f and

NEY eOW(ta) =Y n% < o0.
n=1 n=1

Defining g(t) = f(—t) and h = f + g we have h*(t) = f*(¢/2). Thus, in view
of the Aj-condition on ¢, for any A > 0 there exists £(A) > 0 such that
@) > k(N)p(u) for all u > 0, and so

Io(AR) = >~ 0(AXn)[W(2tn) — W (2tn-1)]
n=1

Z‘F’ 2nW(tn) - W(tn)]

nul
k()) Z

which shows that A & Ay, 4.
Now, conversely, assuming that W satisfies the As-condition, we will

show that A, ., is linear.
We first observe that the As-condition on W implies that

[o o] t (s ]
/Ou(g)w(t)dtgcfo u(tyw(t)dt (10)

for every non-increasing function u. (This is obvious when u is of the form
u = axo,») Where a and b are positive constants. So it also holds for all finite
sums of such functions and for all monotone limits of such sums, i.e., for all
non-increasing functions.) If f, g € Ay, then I,(Af) < 0o and I,(Ag) < oo

2“—1
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for some A > 0 and, using (10), we have

L(3u+a) = [Te(Gr+ger (t))w(t
< /omw(%f 59 %)w
< cfwsa( £t + 50 (®))
<c / o (Amax(f*(2), 97 (1)) w(t)dt

< CIp(Af) + Ip(Ag)) < o0,

which shows that [+ g € Ay .

Remark 4.2 Theorem 4.1 can be considered as a generalization of Corollary
1.5, at least for strictly positive weights for which condition (iii-B)’ has to
be excluded.
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