HEAT STORAGE IN ROCK
— MULTIPLE WELL SYSTEM

SÖREN ANDERSSON
ANDERS ERIKSSON
BO NORDELL

Presented at the Energy Storage Conference,
Seattle Oct 19-21 1981

Serie A no 79

WREL Water Resources Engineering Luleå

UNIVERSITY OF LULEÅ
HEAT STORAGE IN ROCK - MULTIPLE WELL SYSTEM

Sören Andersson Anders Eriksson
AIB Consulting Engineers
P.O. Box 5511
S-114 85 Stockholm, Sweden

Bo Nordell
University of Luleå
S-951 87 Luleå, Sweden

1. INTRODUCTION

The multiple well heat storage system is primarily a seasonal storage. Its function is based on the heat conductivity and storage capacity properties of the rock.

The heat is transferred to or from the rock by means of a fluid, normally water, which is circulated through a great number of boreholes or wells. The boreholes are assumed not to be cased.

Fig. 1. Multiple well heat storage system. Principle sketch

The heat storage capacity of e.g. gneiss and granite is about 0.6 kWh/m3°C, i.e. half of the corresponding figure for water. Hence, a multiple well heat storage system must have a volume
twice as large as e.g. a rock cavern with water and with the same storage capacity at the same temperature swing. Normal operation temperatures are assumed to be in the range of +10°C to +80°C.

2. FUNCTION

2.1 Circulation systems

The heat carrying fluid can be circulated through the wells in open or closed circulation systems. Fig. 2.

Fig. 2. Multiple well system. Circulation systems

In a closed circulation system, the fluid is circulated through U-shaped tubes inserted in the wells. The groundwater in the wells transfers the heat from the tube and the rock.

In the closed circulation system, the circulated fluid has no direct contact with the rock. Therefore, even if the storage is constructed in fissured rock, there will be no loss of water, nor will there be any problems concerning chemical precipitations in tubes, heat exchangers, etc.

On the other hand, a closed circulation system causes less favorable heat transfer characteristics because of the non-direct contact between the fluid and the rock.
Storage temperatures above +100°C can be used, provided the active part of the storage is at a sufficient depth under the ground surface. Fig. 3.

In an open circulation system the fluid is always water. The water is conducted through a tube down to the bottom of the well, where it is released in direct contact with the rock.

2.2 Hydrogeological conditions

A natural or superimposed groundwater flow may have a significant influence on the thermal behaviour and efficiency of a multiple well heat storage system. The ground water flow depends on the hydraulic conductivity and the hydraulic gradient.

A closed circulation system can be used even in fissured rock provided the hydraulic gradient is sufficiently low. Comprehensive investigations concerning the hydraulic conductivity of the Swedish bedrock indicate that generally the natural groundwater flow would not seriously affect a storage of a reasonable size.

An open circulation system implies a super-imposed hydraulic gradient because of the operation pressure. Hence, an open circulation system must always – if grouting, etc is to be avoided – be placed in non- or less fissured rock. However, preliminary calculations concerning acceptable water losses from the wells indicate a maximum permissible hydraulic conductivity which is normally found at least at a certain depth below the rock surface. The storage must then be placed below the fissured zone near the rock surface.
2.3 Thermal behaviour

The thermal behaviour of a multiple well heat storage system has been analyzed by means of the Continuous Heat Source Model for Ground Heat Storage. Simultaneous parameter studies related to the energy and temperature efficiency of the storage have been carried out. Parameters studied are size and shape of the storage, spacing between the wells, injection and extraction fluid temperature, thermal characteristics of the rock, etc. [11, 21].

The thermal behaviour during the heat injection and extraction periods is illustrated in fig. 4, based on the following main conditions:

- storage size: depth 100 m, diameter 100 m
- bedrock: granite with 5 m overburden
- spacing between the wells 4 m
- well diameter 150 mm
- closed circulation system
- max. fluid temperature +80°C
- min. fluid temperature +10°C
- heat injection and extraction rates and periods according to the upper part of fig. 4.

Fig. 4. Thermal behaviour of a multiple well heat storage system for the first three years
The diagram clearly shows the characteristic thermal behaviour of a multiple well system where the rock temperature, approximately equal over the entire storage volume, is steadily increasing or decreasing during the injection and extraction periods.

3. CONSTRUCTION COSTS

A pre-design of a full-scale multiple well heat storage system has shown that the storage can be constructed at low costs and with well known technology [C37]. Construction cost data have been collected and analyzed in order to make possible a cost comparison with other types of seasonal heat storages. The following storage systems have been studied:

- insulated steel tank with water
- rock cavern with water
- multiple well system (heat storage in solid rock)
- vertical pipe system (heat storage in clay)
- gravel-water-basin (excavated, insulated and refilled).

The cost information is given in fig. 5 as specific construction costs, i.e. costs per recovered kWh, as a function of the size of the storage and of the energy recovery factor \(\xi \). All cost data are based on the following assumptions:

- seasonal heat storage (only one storage cycle per year)
- \(T = 55^\circ \text{C} \) (\(T_{\max} = 85^\circ \text{C}, T_{\min} = 30^\circ \text{C} \))
- construction costs do not include costs for
 - land use
 - interest during the construction period
 - operation and maintenance
 - heat pumps
 - value added tax
- stationary heat losses are considered in respect to resultant lower storage capacity and consequently, higher specific construction costs. (The yearly cost of the heat loss itself is not considered.)
- transient heat losses are not considered (however, capitalized costs for transient heat losses may increase the specific construction cost with 0 - 4 % depending on storage type, size and energy costs).

As can be seen in fig. 5, a multiple well system implies considerably lower construction costs than other generally applicable systems.
Fig. 5. Specific construction costs for different types of seasonal heat storage systems.

Temperature swing 55°C

* disposable ground surface (pipe system in subsurface conduits)

** pipe system on or above ground surface

Based on $\Delta T = 20^\circ C$ (The system is up to now only applied to $\Delta T = 10^\circ C$, but may be considered for ΔT up to $45^\circ C$).

4. FIELD TESTS

4.1 Downscaled storage

A multiple well storage downscaled 1:4 has been constructed on a test site in Luleå in the north of Sweden. The test is being carried out by the Department of Water Resources Engineering, University of Luleå.

The test simulates 5 years seasonal heat loading and reloading. The 5 years correspond to a test time of 120 days.

The test aims to justify the above mentioned theoretical studies \cite{11, 27}.

The test storage has 19 wells with an open circulation system for loading and reloading. The wells have a depth of 19 m of which 6 m are overburden. The wells are 1.3 m apart and have a diameter of 52 mm. The storage volume is 431 m3.
Fig. 6. Test site arrangements, Luleå

Fig. 7. Test site, Luleå
During loading, water with a temperature up to 65°C is circulated. The heat is taken from the district heating system. During reloading, water with a temperature down to 20°C is circulated. The amount of the injected and extracted heat is measured as well as the temperature distribution at 75 points in and outside the storage.

The test period is scheduled between 3 July and 31 October 1981.

At present, no evaluated data are available. However, preliminary studies of the test results indicate a good coincidence with the theoretical model. The test results indicate some deviation from the theoretical model concerning heat characteristics of the storage, probably due to convection of water through rock fissures.

Final test results will be reported early in 1982.

4.2 Full scale storage wells

Field tests encompassing a closed circulation system in three wells with a diameter of 150 mm and a depth of 100 m are in preparation at the hydraulic laboratory in Álvkarleby. The primary aim of the test is to solve practical problems concerning installation, tube material, etc. Heat transfer characteristics, etc, will be studied simultaneously.

The tests will be carried out by the Swedish State Power Board in cooperation with AIB, Consulting Engineers. Final test results will be reported in 1982.

References:

 Continuous heat source model for ground heat storage.
 BFR D34:1980, Stockholm

 Bedrock heat accumulation - a method for large scale seasonal heat storage.
 TULEA 1980:14, University of Luleå. (In Swedish.)

3. Andersson, S., Eriksson, A. and Tollin, J.
 Seasonal heat storage in rock - multiple well system.
<table>
<thead>
<tr>
<th>Nr</th>
<th>Author(s)</th>
<th>Title</th>
<th>Source/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bengtsson, Lars</td>
<td>Vertikalprocesser vid en snöyta. TULEA 1975:06</td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>Westerström, Göran</td>
<td>Beskrivning av urbanhydrologiskt mätprogram i Bensbyn, Luleå. TULEA 1978:10.</td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>Westerström, Göran</td>
<td>Inledande urbanhydrologisk studie i Bensbyn, Luleå. TULEA 1977:15.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Håggkvist, Kenneth</td>
<td>Utnyttjande av kylvatten eller luftinbjödning för att åstadkomma isfria hamnar. Litteraturöversikt. TULEA 1979:08.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>James, William</td>
<td>Developing and using computer simulation models of Hydrological Systems. Volume II. TULEA 1978:05.</td>
<td></td>
</tr>
</tbody>
</table>
Nr 14. Bengtsson, Lars

Ice Conditions in the Råne River.

Nr 15. Bengtsson, Lars

Wind induced circulation in lakes.

Nr 16. Westerström, Göran

Nr 17. Häggkvist, Kenneth

Jansson, Bengt-Olov

Nr 18. Bengtsson, Lars

Nr 19. Westerström, Göran

Nr 20. Häggkvist, Kenneth

Utnyttjande av låggradig värmeenergi i sjöar. TULEA 1978:17.

Nr 21. Lundberg, Angela

Snösmältning i en punkt. Rapport från mätningar i Bensbyn. TULEA 1979:05.

Nr 22. Lundberg, Angela

Nr 23. Bengtsson, Lars

Nr 24. Schwarz, Joachim

IAHR Recommendations on testing methods of ice properties, Second Report from IAHR working group on standardizing testing Methods in Ice. TULEA 1979:03.

Nr 25. Holmbom, Åke

Nr 26. Sandkvist, Jim

Reduced ice growth using fire-fighting foam (English summary).
Nr 27. Häggkvist, Kenneth
 Sandkvist, Jim
 Lyftning och avgränsning av sjunkande
 utstopp med bubbelriddar. Modellförsök.
 TULEA 1979:08. Mixing and delimiting a
 sinking water plume with air curtains-
 laboratory experiments (English summary).

Nr 28a. Bengtsson, Lars
 Snösmältning i tätort. Väg- och vatten-
 byggaren 1979 (11-12), 38-42.

Nr 28b. Särner, Erik
 Snösmältningens inverkan på reningsverk.
 Väg- och vattenbyggaren 1979 (11-12) 49-52.

Nr 28c. Johnsson, Anders
 Dagvattenledningens funktion vintertid.
 Väg- och vattenbyggaren 1979 (11-12) 47-48.

Nr 29. Holmbom, Åke
 Energibudgetberäkningar för genomströmnings-
 sjöarna Degerselet och Frästholmaselet,

Nr 30. Bengtsson, Lars
 Dispersion under is i Frästholmaselet
 Workshop on Lake Hydrology, Lillehammer

Nr 31. Lundberg, Angela
 Vattenomättningsstudie i Bensbyområdet
 1976-1979, - speciellt snösmältningsperioden.

Nr 32. Bengtsson, Lars
 Westerström, Göran
 Runoff from a surface study plot.
 TULEA 1979:24, Int. workshop Northern
 Research Basins, Québec, 1979.

Nr 33. Bengtsson, Lars
 Vattenutbytet mellan Luleås innerfjärdar.
 TULEA 1980:04.

Nr 34. Bengtsson, Lars
 A theoretical model of water levels and
 water exchange between a system of connected
 lakes.

Nr 35. Nilsson, Lisbeth
 Inledande studie av infiltration i tjärad
 mark. TULEA 1979:27.

Nr 36. Larsson, Rolf
 Temperaturstiktningar i istäckta sjöar.
 TULEA 1980:05. Temperature stratification
 in ice covered lakes (English summary).

Nr 37. Svensson, Urban
 The structure of the turbulent Ekman layer.

Nr 38. Johansson, Bo
 Nordell, Bo

Nr 39. Johansson, Bo
 Nordell, Bo
 Berglager - en anläggning för säsong-

Nr 40. Baghdadi, A H A
 The numerical modelling of two-phase flows.

Nr 42. Sandkvist, Jim Observed growth of brash ice in ship's tracks. TULEA 1980:25.

Nr 47. Bengtsson, Lars Snowhydrological processes – Lectures presented at the Technical Univ. of Denmark and Univ. of Helsinki, March 1980.

Nr 53. Svensson, Urban Examination of the summer stratification, Nordic Hydrology 1978 (9) 105-120.

Törnqvist, Rolf
Svensson, Urban

Nr 57. Svensson, Urban

Nr 58. Svensson, Urban

Nr 59. Holmbo, Åke

Boundary layer flow over different two-dimensional obstacles. Literature survey. TULEA 1980:35.

Nr 60. Jansson, Bengt-Olov

Processstudier av myrare hydrologi. TULEA 1981:04.

Nr 61. Bengtsson, Lars

Nr 62. Bengtsson, Lars

Snowmelt generated run-off in urban areas. Second Int. Conf. on Urban Storm Drainage, Urbana, Illinois, June 1981.

Nr 63. Bengtsson, Lars

Heat losses from an open water surface at very low air temperature - a laboratory experiment. Int. Ass. Hydraulic Research Conf. on Ice Problems, Québec, July 1981. (Representative of the Swedish IHP-committe).

Nr 64. Bengtsson, Lars

Experiences on the winter thermal regimes of rivers and lakes with emphasis on Scandinavian conditions. Int. Ass. Hydraulic Research, Conf. on Ice Problems, Québec July 1981. (Invited lecture as UNESCO representative).

Nr 65. Bengtsson, Lars
Nilsson, Lisbeth

Nr 66. Bengtsson, Lars

Nr 67. Sellgren, Anders

Nr 75. Bengtsson, Lars The interrelationship between the Bothnian Bay and a series of interconnected lakes - EGS, European Geophysical Society Meeting Uppsala (abstract).

Nr 80. Westerström, Göran
Snowmelt runoff from urban study plot.
TULSA 1982:01.

Nr 81. Bengtsson, Lars
Dimensionerade snösmältningseffekter.
Tidskriftens Väg- och Vattenbyggnaden 1982/1, sid. 8-11.

Nr 82. Bengtsson, Lars
Inverkan av varmeuttag på temperatur- och cirkulationsförhållanden i istäckta sjöar.
On the influence of withdrawal of heat on the circulation and the thermal regime of ice covered lakes. (English summary).
Tidskriftens Vatten 1982/1, sid. 3-16.

Nr 83. Bengtsson, Lars
The Importance of Refreezing on the Diurnal Snowmelt Cycle with Application to a Northern Swedish Catchment. Nordic Hydrology 13, 1982; 1-12.

Nr 84. Marton, Maria
Diskussion om användning av vattenkvalitetstamatmodellen QUAL-II för strömmade svenska vattendrag. TULEA 1982:08.

Nr 85. Holmbom, Åke
A mathematical model of the urban boundary layer. TULEA 1982:09.

Nr 86. Sellgren, Anders

Nr 87. Svensson, Urban
Modelling the turbulence structure of the adiabatic atmospheric boundary layer. TULEA 1982:12.

Nr 88. Lundberg, Angela

Nr 89. Jansson, Bengt-Olov

Nr 90. Jansson, Bengt-Olov
Modellerings av Torne älvs bemärkeviss.

Nr 91. Bengtsson, Lars
Simulerad utveckling av Luleås inre fjärdssystem.

Nr 92. Bengtsson, Lars
Ground- and meltwater in the snowmelt induced runoff. IAHS-Hydrological Sciences Bull. vol. 27 June 1982.

Nr 93. Bengtsson, Lars
<table>
<thead>
<tr>
<th>Nr</th>
<th>Författare</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>Bengtsson, Lars</td>
<td>On the interrelation between dynamic-conceptual and stochastic hydrology. The 50 year anniversary of Prof. Gunnar Lindh.</td>
</tr>
<tr>
<td>97</td>
<td>Nordell, Bo</td>
<td>Värmelagring i berg - fältförsök i Luleå. Energimagasinet 1982/2, sid 67, 74-75.</td>
</tr>
<tr>
<td>100</td>
<td>Jansson, Bengt-Olov</td>
<td>Beräkning av dämning om vågbank byggs mellan våg 400 och ön Haapakylänslaari i Torne älv. TULEA 1982:18.</td>
</tr>
<tr>
<td>101</td>
<td>Sandkvist, Jim</td>
<td>Vertical block sizes in brash ice covered channels. TULEA 1982:19.</td>
</tr>
<tr>
<td>103</td>
<td>Holmbom, Åke</td>
<td>Numerical predictions of flow over two-dimensional obstacles. TULEA 1982:22.</td>
</tr>
</tbody>
</table>