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Sammanfattning 
I rapporten presenteras resultat från en studie av lovande metoder vilka har potential att 
förbättra prestanda för aktiv sonar-system i reverberationsbegränsade miljöer. 

Till att börja med har två metoder för blekning av reverberation implementerats och 
utvärderats med data från simuleringar och från fältförsök. Den optimala 
sonarmottagaren är formulerad för störningar (reverberation i grunda vatten) som är 
spektralt vita och en förprocessering som bleker -- eller vitar -- störningarna bör 
följaktligen kunna ge bättre resultat. Den första metoden bygger på en anpassning av 
det matchade filtret i sonarmottagaren, som bleker reverberationen. Anpassningen görs 
för varje avståndslucka med hjälp av ett estimat av reverberationens kovariansmatris. 
En något bättre detektionsförmåga erhålls med simulerad reverberation i form av rosa 
brus, men till en mycket hög kostad i form av beräkningar. Den andra metoden bygger 
på autoregressiv (AR) modellering av reverberationen i en avståndslucka och 
modellens parametrar används därefter för att bleka reverberationen i nästa 
avståndslucka. Den här metoden gav väsentligt bättre detektionsprestanda då den 
applicerades på data från ett fältförsök, och till en rimlig beräkningskostnad. 

Vidare, Space-Time Adaptive Processing (STAP) är en lovande 
signalbehandlingsteknik som ger god undertryckning av spatio-temporala störningar 
som reverberation och störare. Följaktligen underlättar den detektion av svaga och 
långsamma mål vars egenskaper ligger nära störningarnas. Den största nackdelen med 
STAP jämfört med konventionell processering ligger i en betydande ökning av antalet 
frihetsgrader, vilket leder till stora beräkningskrav och till behov av stora 
träningsdatamängder. De senare finns inte alltid tillgängliga. I rapporten föreslås en 
hierarkisk tillvägagång med kraftigt reducerad komplexitet för att komma till rätta med 
problemen, och vi visar att den ger betydligt bättre prestanda än vanlig STAP för små 
träningsdatamängder. 

Slutligen, syntetisk apertur-sonar (SAS), vilken används i avancerade minjaktssonarer, 
appliceras här vid lägre frekvenser för övervakningsändamål. SAS-processeringen 
läggs här till som ett komplement till en konventionell rörlig övervakningssonar med 
syftet att öka upplösningen i sonarbilden i sonarens rörelseriktning. Det här skulle 
kunna ge en mer korrekt och detaljerad bild av undervattensmiljön, exempelvis flera 
mål i högre upplösning, och upptäckt och åskådliggörande av målskuggor i 
bottenreverberationen. Simuleringar av bevakning under ideala omständigheter, 
speciellt konstant ljudhastighet (både i rummet och i tiden) och försumbara fel i 
positioneringen av sonaren visar att bra resultat kan erhållas för användbara avstånd 
och frekvenser. Andra än ideala omständigheter har också undersökts, exempelvis fel i 
navigeringsdata för sonaren och flervägsutbredning. 

Nyckelord: Reverberationsundertryckning, reverberationsblekning, AR-modellering, 
aktiv sonar, syntetisk apertur-sonar, SAS, space-time adaptive processing, STAP 
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Summary 
This report presents preliminary results from a study of promising methods with the 
potential to improve the performance of active sonar systems in reverberation-limited 
environments. 

First, two methods for whitening of reverberation noise have been implemented and 
studied using simulated and sea trial data. In the first method the matched filter 
receiver is tuned for each rangebin using an estimate of the reverberation covariance 
matrix. It is shown to provide better detection performance on a set of simulated data, 
but at a very large cost in the form of calculations. The second method uses 
autoregressive (AR) modelling of the reverberation noise, and the AR coefficients are 
then used to whiten the reverberation in sea trial data. Detection performance was 
improved significantly using the AR filter, and this was achieved at a fairly low 
computational cost. 

Second, Space-Time Adaptive Processing (STAP) is a promising signal processing 
technique that offers good mitigation of spatio-temporal interference, such as 
reverberation and jammers.  Hence, it facilitates the detection of weak and slowly 
moving targets whose properties lie close to the interference characteristics. The major 
drawback of STAP, compared to conventional processing, is a substantial increase in 
degrees of freedom. This in turn yields large computational costs and a need of large 
training data sets which are not always readily available. This report proposes a 
hierarchical approach to overcome these shortcomings where in each step a decreasing 
number of sub-problems is solved. In this way, the complexity is greatly reduced 
compared to standard STAP approaches. Also, since the method combines solutions to 
sub-problems of smaller dimensionality, the required size of the noise training data set 
is also greatly reduced. As a result, the derived scheme performs better than standard 
STAP algorithms for small sample support. 

Third, Synthetic Aperture Sonar (SAS) processing, commonly used in advanced mine 
hunting sonars, is here applied in lower frequency surveillance applications. The SAS 
processing is added as a complement to the conventional single ping processing of the 
echoes received by a moving surveillance sonar, with the purpose to significantly 
increase the azimuthal (along-track) resolution in the sonar image. This could enable a 
more accurate and informative mapping of the surveyed scene, including higher 
resolution of multiple targets, detection of target shadows in the bottom reverberation, 
and resolution of the shapes of such shadows. Simulations made under idealized 
surveillance conditions, in particular constant (both space- and time-independent) 
sound speed and negligible errors in positioning of the sonar, indicate that good results 
can be obtained for relevant distances and frequencies. Less than ideal conditions are 
also investigated, including effects of errors in navigation data of the sonar and 
multiple bottom and surface reflections. 

Keywords: Reverberation suppression, reverberation whitening, AR modelling, active 
sonar, synthetic aperture sonar, SAS, space-time adaptive processing, STAP 
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1 Introduction
In this report we present signal processing methods aiming to improve the ac-
tive sonar surveillance in reverberation limited undersea environments. High re-
verberation levels complicate the detection and classification performance of an
active sonar system, particularly in shallow waters like the Swedish archipela-
gos. The effects of reverberation can be mitigated in many ways, one of which
is minimization of the reverberating volume. This can be accomplished through
careful selection of sonar waveform [1, 2, 3] and through beamforming of either
or both of the transmitter and the receiver [4]. In this report however, we look
at several other reverberation mitigation methods. To assess performance, the
methods were applied to sample simulated and real seatrial data. The sim-
ulated data were created to represent the output of a current sonar system
and the experiment dataset was acquired during the BAROC seatrial in 2002
[5]. Note however that the methods studied here are general and there is no
reason to assume that they will not apply equally well to data from other sonar
systems.

Most traditional processing schemes apply a decoupled approach, i.e. pro-
cessing is performed either in a spatial-then-temporal or a temporal-then-
spatial manner. Focusing on the former approach this means that spatial
properties are first addressed using beamforming followed by temporal pro-
cessing to identify Doppler properties.

In our first investigation we will assess the performance of the optimal de-
tector for the case with a known signal in interfering reverberation and noise
[6, 7, 8, 9]. We will consider a spatial-then-temporal approach in which the
spatial processing is performed using conventional beamforming. Hence rever-
beration mitigation is here addressed in the temporal domain only. Basically,
the matched filter is prewhitened using an estimate of the interfering rever-
beration covariance matrix before it is applied to the received data. Since
the covariance matrix normally varies with time, the matched filter must be
updated continuously yielding a heavy computational workload. As an alterna-
tive, whitening has also been performed using autoregressive (AR) modelling of
the reverberation data [10, 11], which is also a computationally more efficient
procedure.

Extending the above mentioned ideas to address not only temporal proper-
ties, but the joint space-time reverberation properties render algorithms that
are commonly referred to as Space-Time Adaptive Processing (STAP), see for
instance [12] and references therein. Such signal processing techniques are
commonly used in radar to enhance the ability to detect targets that might
otherwise be obscured by interference, especially in moving platform scenar-
ios where optimal reverberation suppression has to be attacked using a joint
approach. STAP is here applied to active sonar in order to mitigate reverbera-
tion, specifically targeting scenarios with moving sensor platforms. The major
drawback of STAP, compared to more traditional processing approaches, lies
in a substantial increase in degrees of freedom see [12]. This potentially yields
great computational cost in implementing these techniques along with the need
for large training data sets which might be difficult to obtain. Our approach
in this report is hence to focus on low-complexity techniques that require only
small training data sets.

Finally, Synthetic Aperture Sonar (SAS) processing, commonly used in ad-
vanced mine hunting sonars, [13], is here applied at lower frequencies for surveil-
lance applications in order to enhance the capability to classify detected echoes

11
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and to reduce the false alarm probability. The effects of uncertainties concern-
ing the sound velocity profile and the SAS array position on the produced SAS
image are studied through simulations.

The layout of this report is as follows. Chapter 1 is this introductory text.
Chapter 2 presents the implementation and study of two methods for reverber-
ation prewhitening. Section 2.1 discusses prewhitening with the conventional
matched filter detector and in section 2.2 a whitening method based on AR
modelling of the reverberation is presented. Chapter 3 presents results from
applying low-complexity techniques to STAP processing. In chapter 4 SAS
processing is applied at lower frequencies to reduce the false alarm probability.
The report is concluded in chapter 5.

12
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2 Reverberation whitening

2.1 Covariance-tuned matched filter

The active sonar detection case is often processed using hypothesis testing,
where one hypothesis is that we have only noise in our observation and where
the other hypothesis is that we also have a signal in the form of a target
echo present. Using the basic model where the target is a point-reflector, the
received signal is a delayed and attenuated version of the emitted pulse or ping.
Since we do not generally have access to the a priori probabilities it is common
practice to use the Neyman-Pearson criterion [6, 7, 14] which only requires the
probability distributions of the signal and noise respectively.

In the Neyman-Pearson detector a likelihood ratio is used to signal a de-
tection. The probability distribution of a certain observation x of the received
signal under each of the two hypoteses and their quotient is formed, i.e.

Λ =
p1(x)
p0(x)

H1
>
<
H0

β (2.1)

where the suffix 0 corresponds to hypothesis H0 (noise only) and suffix 1 cor-
responds to hypothesis H1 (target echo is present). Given an observation x we
choose H1 when Λ ≥ β and H0 otherwise.

In the ambient noise-limited case we model an active sonar as operating
in the presence of additive white Gaussian noise only. This is a reasonable
model when the sonar is operated in deep water, i.e. where any reflecting
surfaces, apart from the point-reflector-like target, are far from the sonar. The
hypotheses for the received signal length-N vector x(t) here are

H0 : x(t) = n(t) (2.2)
H1 : x(t) = s + n(t) (2.3)

where s is the emitted signal, and n(t) is the noise contribution to the received
signal at time instant t. To be able use the detection criterion in equation
(2.1), we need the probability density functions for the received signal under
both hypotheses. Under hypothesis H0 we use the multivariate complex normal
(Gaussian) distribution to obtain

p0(x) =
exp(−xHR−1

n x)
(π)N |Rn|

(2.4)

where Rn is the noise covariance matrix. Using the same distribution under
H1 for x− s, we obtain

p1(x) =
exp(−(x− s)HR−1

n (x− s))
(π)N |Rn|

(2.5)

It is now possible to form the likelihood ratio

Λ =
p1(x)
p0(x)

= exp
{(

sHR−1
n x + xHR−1

n s− sHR−1
n s
)}

(2.6)

Here the third term in the exponent does not depend on the received data
(x) and can therefore be omitted, or more formally, be incorparated into the

13
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threshold β. Using a similar argument, the first and second terms are trans-
poses of eachother and it suffices to use one of them. Also, since exp( · ) is a
monotonically increasing function in its argument, it is sufficient to study the
argument itself. Consequently, an equivalent form of the Neyman-Pearson test
in (2.1) becomes

Λ′ = sHR−1
n x

H1
>
<
H0

β′. (2.7)

In a real application the signal part s of the received signal is seldom known
exactly. Often only its shape is known while its amplitude α is unknown. Hence
a more correct formulation of the received signal under hypothesis H1 would
be

H1 : x(t) = αs + n(t) (2.8)

and we note that the distribution under hypothesis H1 is thus also unknown.
One way to attack this problem is to estimate α with a maximum likelihood
method and then use the estimate α̂ as if it was the true amplitude in eqn.
(2.8). This procedure is known as the generalized likelihood ratio test (GLRT).
Even though the GLRT is only asymptotically optimal it performs well in many
real applications. For this case the test in eqn. (2.7) becomes

Λ′′ = |sHR−1
n x|, (2.9)

see for example [15] and references therein.
A commonly used assumption is that the additive noise is spectrally white

and independent. The covariance matrix may the be written σ2I where σ2 is
the noise variance and I is the identity matrix. The noise variance may be set
to 1 without loss of generality and the test statistic for this case becomes

Λ′′′ = |sHx| (2.10)

which is the output of a traditional matched filter or replica correlator. Thus
the matched filter corresponding to eqn. (2.10) is the optimal detector for
the case when the noise component is white and independently distributed.
Conversely, if this is not true, the above result means we should be able to have
better detection performance if we compensate the replica s with the inverse
of the current noise covariance matrix R−1

n . The latter is seldom known, so
normally an estimate will have to be used.

The reverberation-limited case is handled analogously by considering the
signal s to be deterministic and the reverberation to be stochastic. The hy-
potheses for this case are [8],

H0 : x(t) = c(t) + n(t) (2.11)
H1 : x(t) = s + c(t) + n(t) (2.12)

where c is a reverberation or clutter term. If we assume that this term is also
Gaussian distributed and uncorrelated with the ambient noise term [8, 16, 11],
we may treat c and n together as a Gaussian process with a covariance matrix
that is the sum of the individual covariance matrices, Rc+Rn. In the following,
this aggregate covariance matrix will be denoted Rn. Under these assumptions
the optimal processor is the same as in the noise-limited case, but with a
different covariance matrix.

14
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In order to assess the value of reverberation whitening a simulation was
performed. Pink coloured (i.e. where the power spectral density is proportional
to the reciprocal of the frequency, 1/f) Gaussian noise was generated and was
used to simulate reverberation in the output of a beamformer. A point target
echo was added in the form of a 200 ms linear frequency-modulated (LFM)
chirp. The center frequency of the chirp was 1500 Hz and the bandwidth
1000 Hz.

This output beam signal was passed through the matched (to the LFM
signal) filter of eqn. (2.7) to obtain pulse compression. One hundred range-
bins, centered at the range-bin containing the target echo, of the matched
filter output were chosen for presentation. The matched filter output was also
normalized so that the target echo was equal to 1.

Sample covariance matrices were calculated for each range-bin of the beam-
former output and finally averages over 10 range-bins were used as the estimate
of the covariance matrix Rn in eqn. (2.7). The estimate R̂n was then applied
to the range-bin immediately following the interval of range-bins used for the
estimate.

The pulse length of the chirp in the complex baseband (i.e. the length of
the matched filter) was 200 samples, and consequently the covariance matrices
were of size 200×200. Since the covariance matrix estimates were based on only
10 range-bins each, some sort of regularization had to be performed. Here we
used diagonal loading, i.e. the following matrix was added to each covariance
matrix estimate

kσ2
nI,

where the constant k was set to 2 and where σ2
n is the variance of the generated

pink noise and I is an identity matrix of size 200 × 200. The constant k was
varied to some extent, but its value did not prove important for this simple
simulation.

For comparison the reverberation whitening receiver was also compared to
the more traditional active sonar receiver of eqn. (2.10), where the matched
filter is fixed, i.e. does not change with time (range-bin). The output of the
matched filters on the range interval of interest (where the target is located) is
found in figure 2.1.

Local maxima (peak amplitudes) on both sides of the target echo in fig-
ure 2.1 (but excluding the target echo itself) and their mean values over 100
pink noise realisations were found and compared, with and without whitening.
In this simulation the mean peak level was decreased by approximately 17 %
with whitening compared to without whitening. For a given detection proba-
bility (i.e. for a given detection threshold) this means fewer false alarms or a
decreased false alarm probability.

Computationally the use of an inverse covariance matrix estimate for rever-
beration suppression can be very costly, especially for long sonar pulses. Since
the matched filter is essentially the emitted signal itself, it will be equally long
and the corresponding covariance matrix will be the square of that length. This
means that a very large set of data must be available in order to estimate Rc.

The covariance whitening was also tested on experiment data. The data we
had at hand were recorded during the BAROC sea trial in the Baltic Sea in
2002 [5, 17]. The BAROC sea trial was a collaboration between the FOI and
the FWG of Germany. In the particular run used here, a monostatic setup was
used. An omnidirectional transmitter emitted a 2 s linear frequency-modulated
(LFM) pulse with a center frequency of 1.5 kHz and a bandwidth of 1 kHz. The
receiving antenna was a 32-element uniform linear array (ULA) in a horizontal

15
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Figure 2.1: Matched filter output without (left) and with (right) reverberation whitening
for 100 pink noise reverberation realisations. To the left the matched filter is fixed, i.e.
it does not change for each range-bin. To the right the matched filter is updated for
each range-bin with an estimate of the covariance matrix from 10 previous range-bins.
A 17 % decrease of the mean peak level on either side of the target was found.

arrangement. The design frequency of the array was 3 kHz. The setup was
static in that neither the transmitter nor the receiver was moving.

The data were beamformed and the broadside beam was selected for further
processing and display. The covariance matrix Rc, was estimated from range-
bins outside the one under observation, and the matched filter was updated for
each range-bin, before it was being applied to the broadside beam data.

With a baseband sampling rate of 1 kHz the matched filter for this data
set will be 2000 samples long and the covariance matrix a huge 2000 × 2000
samples. Consequently we were expecting problems in estimating this matrix
well enough to enjoy better detection performance, and this also proved to
be the case. We were not able to see any benefits from the whitening on this
dataset, probably due to the very large number of samples needed to get a good
estimate of the covariance matrix and that the reverberation was not constant
during that time. In the next section however, we shall see that autoregressive
modelling of the reverberation will provide significant improvements for the
BAROC sea trial data.

2.2 Autoregressive filtering

We have seen one example of the advantages of reverberation whitening. We
observe that true whitening can only be performed if Rn is known. In other
cases approximations have to be made. The solution in section 2.1 is one such
appproach. In fact approximate whitening can be performed in many different
ways, and a relatively low-complex solution was presented in [11]. Here the
whitening is based on an autoregressive (AR) model of the reverberation noise
in each beam signal. The use of an AR model is motivated by the fact that the
reverberation spectrum depends heavily on the underwater environment and
often changes with time. Consequently, a prewhitener must be able to model
the reverberation spectrum using only small sets of data and the AR model is
very good at this [10].

16
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The reverberation noise component is modelled as

nt = −
p∑
k=1

aknt−k + εt (2.13)

where ak are the AR coefficients, p is the AR filter order and εt is a white noise
process that drives the AR process. The AR model coefficients are estimated
for each rangebin and the inverse, or whitening, FIR filter is then

Â(z) = 1 +
p∑
k=1

âkz
−k. (2.14)

The whitening filter is subsequently used to inverse filter the reverberation data
in the following rangebin. Under the assumption that the reverberation colour
is fairly constant from one rangebin to the next, there should be a signifigant
decrease of the reverberation levels from the whitening. The whitening filter is
also applied to the matched (to the sonar waveform) filter in the sonar receiver
before the matched filter is applied.

Once again one ping of the BAROC data described in section 2.1 was beam-
formed and the broadside beam was chosen for whitening and presentation. For
reference, a target echo was added to the raw data at a range corresponding
to rangebin 353. The beam signal was divided into rangebins of the same size
as the sonar pulse, here 2000 samples, and a rangebin step size of 20 samples
was used (i.e. the rangebin overlap was 1980 samples). An AR model of order
10 was fit to the data in one rangebin and the inverse filter was applied to the
following rangebin and to the matched filter.

The results of the autoregressive whitening are shown in figure 2.2 for the
full observation time of one ping (upper two graphs) and for the range-interval
around the added target echo at range-bin 353 (lower two graphs). Relative
to the target echo peak at rangebin 353, the output levels are in general sig-
nificantly reduced. Hence, the detection threshold could be lowered with no
accompanying increase of false alarms as a result.
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Figure 2.2: Matched filter output without (left) and with (right) reverberation whitening
using autoregressive (AR) modelling of an active sonar data set from the BAROC sea
trial. The lower two graphs show a zoom of the upper two graphs for the rangebin
interval 300-400. To the left the matched filter is fixed, i.e. it does not change for
each rangebin. To the right the matched filter is updated for each rangebin with an
autoregressive whitening filter and is then applied to data from the next rangebin after
this has been prewhitened. After normalization to the added target at rangebin 353, it
is evident that the reverberation in adjacent rangebins has been significantly reduced.
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3 Space-Time Adaptive Processing
(STAP)
The primary target of an under water surveillance system is to detect targets
in the presence of noise, reverberation and jammers. The task becomes partic-
ularly challenging if the surveillance is performed from a moving platform since
the platform motion renders self induced Doppler spread of the reverberation.
However, the reverberation will in this case contain structure since a certain
bearing can be related to a certain doppler shift [18, 12, 19].

The purpose of Space-Time Adaptive Processing (STAP), [12, 19] is to ad-
dress this feature by generalizing the approach taken in Section 2. Considering
a joint space-time approach enables mitigation of subspace interference in the
spatio-temporal domain, contrary to subspace mitigation in the temporal or
spatial domains alone. Such a strategy therefore has its evident advantages
since the effect on reverberation caused by platform motion have exactly those
properties.

The major drawback of STAP lies in substantial increase in degrees of
freedoms, compared to conventional processing. This potentially yields great
computational cost in implementing these techniques along with the need of
large training data sets which might be difficult to obtain.

3.1 Space-Time Data Model

Basically the idea of STAP is to generalize the results considered in Section 2.
However, instead of considering already beamformed data and only consider
temporal processing, we here take a space-time approach. Assuming that the
system under consideration transmits a CW-pulse and that a target is present
in a specific range bin, the discrete-time baseband array data can be modeled
as

x(k) = s a(φ)ejωk + n(k), k = 1 . . . ,M, (3.1)

for time index k. Here s is the complex amplitude of the target, ω is the Doppler
shift due to relative motion between the platform and the target, a(φ) is the
array response of the N-element array, and n(k) contains the contributions
from reverberation, noise, and jamming signals.

By stacking the M array measurements into a NM×1 space-time snapshot,
we can express the measured data as

x =


x(1)
x(2)

...
x(M)

 = sr(φ, ω) + n (3.2)

Above n denotes the disturbance obtained by stacking the noise and interfer-
ence components n(k) and r(φ, ω) denotes the spatio-temporal array response

r(φ, ω) = d(ω)⊗ a(φ)

where

v(ω) = [1 ejω ej2ω . . . ej(M−1)ω]T

and ⊗ is the Kronecker product.
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3.2 STAP processing

Similar to (2.9), in STAP the purpose is to design a space-time beamformer,
w(φ, ω), which applied to the measured data x, renders the angle-Doppler
spectrum

P (φ, ω) =
∣∣wH(φ, ω)x

∣∣2 . (3.3)

Considering that the underlying task is to mitigate interference and noise, a
natural design criterion for w(φ, ω) is to maximize the signal-to-interference
plus noise ratio (SINR). Under such an approach the spatio-temporal beam-
former is given as

w(φ, ω) = R−1
n r(φ, ω) (3.4)

where Rn is disturbance covariance matrix

Rn = E
(
nnH

)
,

see [20, 12]. We also note from (2.9) that this solution can be interpreted
through the Generalized Likelihood Ratio Test (GLRT) framework. However,
as described in section 2, Rn, is rarely known a priori but has to be estimated
by some means. As described in [12, 19] and Section 2 the most common
way is here to use secondary data collected from adjacent range bins. Let
xl, l = 1, . . . , L denote these data. Means to incorporate partial prior knowl-
edge regarding Rn, using physical models, is also a very active field in the
research community, see [21] and references therein.

In most applicable scenarios, L << MN whereby the standard covariance
matrix estimator

R̂n =
1
L

L∑
l=1

xkxHk , (3.5)

cannot be used since R̂n becomes singular with probability one. Nevertheless,
since (3.5) is a sufficient statistic for Rn it is often a natural component in
most STAP solutions.

Perhaps the most common strategy is to employ diagonal loading and use
a covariance matrix estimate on the form

R̂
α

n = R̂n + αI, (3.6)

see [22]. I is here the identity matrix. Although slightly ad-hoc, diagonally
loaded solutions tend to work well in many practical application. In fact,
diagonally loaded solutions have some theoretical motivation; such solutions
arises by imposing a white noise gain constraint [23] or by considering array
response modeling errors [24]. The main difficulty in applying a diagonally
loaded solution is to assign the design parameter α. Rules of thumb exist but
few techniques to obtain α from data exist. Perhaps the most theoretically
sound approach was given in [25] in which an empirical Bayesian strategy was
used to obtain α as

α =
1
L

arg max
γ

γp
2

|XXH + γ I|L+p
, (3.7)

where p = NM and X = [x1 x2 . . . xL].
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By noting that the main difficulty relates to the fact that the amount of
training data, L, is usually relatively small compared to the underlying dimen-
sionality of the problem, an alternative approach is to non-adaptively reduce
the dimensionality. Such methods are usually referred to as beamspace trans-
forms. Through dimension reduction these techniques impose constraints on
the structure of Rn. The desirable consequence of this is that the degrees of
freedom that must be estimated from secondary data is reduced and that the
computational complexity decreases. The drawback is inherently that some of
the adaptivity vanishes, due to the non-adaptive dimension reduction.

In recent years much effort have therefore been put into strategies to find
reduced rank solutions in which the dimension reduction is performed in an
adaptive fashion; in other words finding dimension reduction techniques that
depend on the interference characteristics. Perhaps the most commonly sug-
gested alternative is to use the Multistage Wiener Filters (MWF) as suggested
in [26, 27] which to-date is considered to be state-of-the art in STAP processing.
Since this strategy was first developed, it has in later work been established
that the rank k MWF filter is equivalent to the kth iteration in a conjugate
gradient solution [28] to the systems of linear equations,

R̂nw(φ, ω) = r(φ, ω),

see [29] and references therein. Thus we can describe its construction procedure
as follows; We start by initializing the recursion using the initial filter vector

w0 = r,

along with an initial search direction d0 = g0. Hence, we initialize the filter
with the conventional processor1. We have here dropped the dependence on
(φ, ω) for notational convenience. The vector g0 = r− R̂nw0 is here the initial
(negative) gradient vector. Throughout the recursion, the conjugate gradient
solution, at iteration k, generates the approximation

wk = wk−1 + dk−1αk−1, (3.8)

where the step size αk−1 = ||gk−1||2/ dHk−1R̂n dk−1is chosen to optimize the
amount of updating along direction dk, so that the quadratic objective func-
tion decreases monotonically. || · || is the euclidean norm, i.e. ||g|| =

√
gHg.

Accordingly, the gradient vector is updated as

gk = gk−1 − αk−1R̂ndk.

Subsequential search directions are chosen as R-conjugate directions:

dk = gk +
||gk||2

||gk−1||2
dk−1

where dHk R̂ndm = 0 for k 6= m. At iteration k, we note the following, see also
[29].

• The gradients g1, . . . ,gk turn out an orthogonal basis for the Krylov
subspace

Kk(R̂n, r) =< r, R̂nr, . . . , R̂
k−1

n r >

where < a1, . . . ,ak > denotes the span of the vectors a1 through ak.
1If w(φ, ω) = r(φ, ω) the resulting spectrum equals P (φ, ω) = |r(φ, ω)Hx|2. This is the

conventional processor as noted in eq. (2.10).
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• The directions d1, . . . ,dk turn out a non-orthogonal basis for Kk(R̂n, r),
but the directions are R̂n-conjugate.

Now, studying (3.8) we note that the resulting filter at iteration k can be re-
garded as a linear combination of the included direction vectors. Hence, at
iteration k the conjugate gradient approach yields a solution which is guaran-
teed to lie in the rank k subspace Kk(R̂n, r).

The iterations, for any R̂n, will converge in at most MN steps, yielding the
fully adaptive solution. However, for many problems good results are achieved
much earlier than that since the convergence properties basically depend on the
eigenvalue structure of R̂n. The procedure is, in fact, guaranteed to converge
in l steps where l is the number of distinct eigenvalues of R̂n, see for instance
[30]. Since the interference most often exhibits low-rank structure, in the ideal
case with Rn known, the procedure would thus converge in at most the rank of
the interference plus one iterations, where the plus one accounts for the noise
eigenvalue. In an application where R̂n is used in place of Rn, however, eigen-
value separation in (3.5) renders the number of distinct eigenvalues to equal
min(MN,L) with probability one, see [25]. However, by stopping the proce-
dure after an appropriate number of iterations (basically equaling the rank of
the interference plus one) the ill-conditioning and hence the noise enhancement
properties of the full-adaptive STAP can be avoided.

We note that this technique produces an implicit dimension reduction that
depends on the underlying characteristics, R̂n, of the interference, this since
wk ∈ Kk(R̂n, r(φ, ω)). In addition, we note that the dimension reduction is
angle-Doppler dependent. In most aspects the latter property is a desired
one since the rank reduction take the specific probing parameters (φ, θ) into
account. However, from a computational perspective this is challenging since
it requires the rank reduction to be performed for each individual set of (φ, ω).
Thus, if we desire to image the whole (φ, ω)-plane this yields highly complex
solutions. So far, this property has attracted little attention in the research
community. In fact, MWF-STAP, or equivalently Conjugate Gradient (CG)
STAP is often referred to as a low-complex solution. This is only true if we
consider recovering signal energy along very few directions. In fact, in most
cases a MWF/CG approach would yield a more complex implementation than
a diagonally loaded solution despite the fact that it requires matrix inversion.

To address the shortcomings of the CG approach we return to the basic
problem formulation. We note that our desire, in essence, is to approximate

rH(φ, ω)R−1
n x, (3.9)

see (3.3). The conventional CG-STAP procedure replaces R−1
n with R̂

−1

n and
finds a low-rank approximation to w(φ, ω) = R̂

−1

n r(φ, ω). The computational
expense occurs since the low-rank filter wk(φ, ω) has to be derived for each set
of probing parameters (φ, ω). Meanwhile we note that (3.9) is symmetrical in
r(φ, ω) and x. Hence, in order to avoid having to find the low-rank filter for
each set of probing parameters, an alternative is to run the conjugate gradient
algorithm against x instead of rH(φ, ω), i.e., by studying the spectrum

PMCG(φ, ω) = |rH(φ, ω)yk|2 (3.10)

where yk is the rank k solution to the system of linear equations

R̂ny = x.

We refer to this as the Modified Conjugate Gradient solution. yk can hence be
interpreted as a rank k attempt to remove the interference contained in x. The
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advantage is of course that we only need to run the conjugate gradient iteration
once, irrespective of probing parameters. The disadvantage is naturally that it
will not yield probe dependent rank reduction. However, we suspect that the
downside of this is limited since the convergence properties of the conjugate
gradient scheme basically depends on the eigenvalue structure of R̂n. Hence
we suspect and hope to reach similar performance with significant reduction in
computational complexity.

3.3 Evaluations

To investigate the promise of the various STAP techniques for underwater
surveillance purposes we will study a scenario which uses a half wavelength
spaced N=31 element flanked uniform linear array. For such a scenario the
array response is given by

a(φ) = [1 e−jπ sinφ e−jπ2 sinφ . . . e−jπ30 sinφ]T .

The transmitted signal is a 20 ms CW pulse at 25 kHz. Furthermore, it is
assumed that the receiver demodulates and downsamples the signal to 1 kHz
sampling rate. Hence, in the discrete-time model given above this yields M =
20 samples in time, overall generating a scenario with dimensionality NM =
610. It is assumed that the sensor platform moves with speed 3 m/s which will
render self induced space-time dependent reverberation. The target of interest
is located at 0.35 radians with respect to broadside. Furthermore, the target is
moving with a heading of 45 degrees compared to that of the sensor platform.
This will generate an effective target Doppler shift of 80.5 Hz with 1425 m/s
sound propagation or 0.51 radians in the discrete-time model. In conclusion,
the target parameters are φ = 0.35 and ω = 0.51. The scenario is summarized
and illustrated in Fig. 3.1. Our focus is on reverberation limited scenarios so
throughout our simulations the target is modeled to be 20 dB stronger than
the background noise.

Figure 3.1: Surveillance scenario considered in the STAP evaluations

Two different means to model the signal propagation will be investigated.
First, a case in which both the signal and the reverberation is modeled as plane
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wave point sources will be studied. Subsequently a case in which the signal
propagation is modeled through ray-tracing will be investigated.

3.3.0.1 Plane-wave point reverberation

To model the induced reverberation, we consider 20 point sources quasi-randomly
distributed within the Doppler-ridge created by the platform motion. The re-
verberation is between 2-3 dB stronger than the desired source target.

In Figure 3.2(a) we observe the angle-Doppler spectrum for non-adaptive
conventional processing. We specifically note the effect of the structured rever-
beration, which over-clouds the contribution of the desired target. In Figure
3.2(a) the location of the desired target is indicated with the white mark. In
contrast, Figure 3.2(b) illustrates the angle-Doppler spectrum for genie aided
STAP, i.e., fully adaptive STAP using the known interference covariance matrix
Rn. Naturally, such a solution is not possible to implement in practice since
Rn is not known, however, it serves as a reference and shows the improvements
that are possible using an adaptive space-time approach. In 3.2(b), the desired
target is clearly visible.
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Figure 3.2: From left to right (a)-(b): (a) Angle-Doppler spectrum of conventional pro-
cessing. The true position of the target is indicated using the white mark. (b) Angle-
Doppler spectrum of genie-aided STAP.

As mentioned, the performance of STAP is mainly determined by the abil-
ity to characterize the interference using limited amount of training samples.
Therefore the purpose is here to investigate the various STAP algorithms in
the case of small sample support, in this case L = 64 << MN . Three different
STAP algorithms will be considered, namely CG-STAP in (3.8), MCG-STAP
in (3.10), and diagonally loaded STAP where the regularized covariance matrix
estimate in (3.6) and (3.7) is used in place of Rn in (3.4). For the conjugate
gradient based methods results are shown for the rank-22 implementations.
The results are given in Figure 3.3.

Looking at the results in Fig. 3.3 we note that all methods show similar
and adequate performance. The desired target is clearly visible in all three
cases. In fact, the performance is only slightly worse than that of the genie-
aided processor in Fig. 3.2b for which the characteristics of the reverberation
were perfectly known. Studying the computational efforts in deriving these
solutions we however note large differences. The CG-based solution required in
the order of 520 time units to compute, the diagonally loaded solution required
33 time units to compute while the modified CG-solution required 0.39 time
units. This should be compared to the computational efforts required to find
the conventional spectrum in Fig. 3.2a which was 0.22 time units. Hence,
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Figure 3.3: From left to right and top to bottom(a)-(c): (a) Angle-Doppler spectrum for
CG-STAP. (b) Angle-Doppler spectrum for MCG-STAP. (c) Angle-Doppler spectrum for
diagonally loaded STAP. The true position of the target is indicated using the white
mark.

in low-rank situations where the secondary data carries sufficient information
regarding the reverberation characteristics, the modified conjugate gradient
solution appears to offer adaptive performance at similar computational cost
compared to the conventional processor.

3.3.0.2 Reverberation through Ray-tracing

The investigated procedures is also tested using time-series generated with
the wave-propagation model RAYLAB [31, 32]. The purpose is two-folded.
First, we would like to investigate the robustness of the technique to non-ideal
propagation. Second, we would like to study how accurately adjacent range
bins can characterize the reverberation in the range bin under consideration.
Caution is however pointed out since real data i ultimately required in order
to accurately assess the performance of the studied techniques.

The simulator RAYLAB is based on ray-tracing [33] and utilizes a layered
environment with range independent parameters. The source, the receiver and
the target are all situated at a depth of 40m and the water depth is 60m.
Pertinent properties of the sound propagation are summarized in Table 3.1.
The target is located 4400 m from the sensor platform, and data corresponding
to ranges 4000-4380 and 4440-4800 m are employed as secondary data, i.e.,
used to estimate R̂n. Furthermore, the reverberation is here approximately
4dB stronger than the target. Otherwise, the underlying scenario is identical
to the one used above.

The results are seen in Fig. 3.4. Again, we notice the Doppler ridge in
the conventional spectrum which interferes the target signature. Also, we note

25



FOI-R--2661--SE

that the adaptive processors are highly successful in mitigating the reverbera-
tion. Keeping in mind the the complexity of the modified conjugate gradient
technique is just about twice that of the conventional processor in a direct im-
plementation, it is definitely an attractive methodology in active underwater
sensing.

The investigated scenario considered a stationary environment in the sense
that all environmental parameters such as sound speed profile, bottom charac-
teristics, and water depth were all constant. Since the effectiveness of STAP
basically depends on the amount of secondary data that can carry information
regarding the cell under investigation, such an assumption favor STAP imple-
mentations. In order to fully investigate the promises of STAP for underwater
surveillance purposes, models with varying characteristics and real data hence
have to be used.
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Figure 3.4: Performance for data obtained through Ray-tracing. From From left to right
and top to bottom (a)-(d): (a) Angle-Doppler spectrum for the conventional processor.
(b) Angle-Doppler spectrum for CG-STAP.(c) Angle-Doppler spectrum for MCG-STAP.
(d) Angle-Doppler spectrum for diagonally loaded STAP.The true position of the target
is indicated using the white mark.
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Emitted pulse Carrier frequency: 25 kHz (CW)
Pulselength: 0.02 s
Source level: 200 dB re 1µPa@1m

Environment Waterdepth: 60m
Sound propagation: Upwards refracting winter profile with linear
gradient from 1422m/s at the surface to 1425m/s at the bottom.
Bottom properties: The upper layer has properties typical of a clay
bottom with a density of 1600 kg/m3. Sound velocity increases
with depth from 1435m/s till 1740m/s.
Total reflection for grazing angles less than 7o.
Surface properties: Total reflection

Table 3.1: Specification of transmitted pulse and underwater environment.
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4 Synthetic Aperture Sonar (SAS)
Processing
In synthetic aperture sonar (SAS) processing coherent integration of echoes
from several pings is used to improve the detection and resolution in the sonar
image. As pointed out by Cutrona in 1975 [34] the main attractive property of
SAS processing is that the azimuthal (along-track) resolution achievable under
ideal conditions is independent of target range. This simple result is obtained
by noting that the azimuthal beamwidth at SAS-processing of data from a
linear synthetic aperture with length Lsa is [34, Eqn (2)]

βsa =
λ

2Lsa
(4.1)

radians, where λ is the wavelength. Assuming that the distance from the target
to the sonar track is D and that the synthetic processing uses all pings along
the track for which the target is inside the emitter lobe, the length of the
synthetic aperture is

Lsa = 2D tan
βe
2

(4.2)

where βe is the horizontal width (in radians) of the emitter lobe. By combining
equations (4.1) and (4.2) the along-track resolution at the target is seen to be

∆xsa = Dβsa =
λ

4 tan(βe/2)
(4.3)

which is independent of the range D to the target. In contrast, the beamwidth
at conventional sonar processing is

βc =
λ

L
(4.4)

where L is the physical aperture of the receiver array, and the along-track
resolution cell of conventional processing is

∆xc = Dβc =
Dλ

L
(4.5)

and thus grows linearly with target range D.
As seen from equation (4.4) the beamwidth of a conventional linear array

with length Lsa would be twice the SAS beamwidth (4.1), which illustrates that
SAS and conventional beamforming are closely related. The factor two arises
since with a conventional array the emitter is fixed, e.g. at the center of the
array, while in SAS the emitter moves along the array which approximatively
doubles the variation of the source→ target→ receiver travel time as function
of receiver position [34], [35].

The range resolution, achieved by replica correlation processing, is

∆ysa = ∆yc =
c∆t

2
(4.6)

for both SAS and conventional sonar, where c and ∆t are the soundspeed and
the 3dB width of the autocorrelation of the emitted waveform. For an LFM
pulse with center frequency fc, bandwitdh B and length T

s(t) = fct +
Bt2

2T
− T

2
≤ t ≤ T

2
(4.7)
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the autocorrelation width is approximately

∆t ≈ 1
B

(4.8)

The range resolution is then

∆ysa = ∆yc ≈
c

2B
(4.9)

obtained from equations (4.6) and (4.8).
It should be noted that equation (4.3) is derived assuming an ideal prop-

agation medium, and that the resolution achievable by SAS will in practice
be reduced by complications such as multipath propagation and incomplete or
imprecise information on the acoustic parameters of the underwater medium
as well as on the position and orientation of the sonar. The purpose of the
simulations presented here is to investigate the effect of such complications on
the SAS processing.

4.1 Surveillance scenarios

The parameters of the simulations presented below are chosen to be representa-
tive for surveillance with a variable depth sonar (VDS) towed by a surface-ship.
The sonar has a 60◦ horizontal emitter lobe and a 87 cm long linear uniform
array of 16 receiver hydrophones. The emitted waveform is a 20 ms long LFM
pulse with center frequency 25 kHz and bandwidth 5 kHz.

Figure 4.1: SAS surveillance scenario.

A shallow-water surveillance scenario is considered, with a target close to
the seafloor and the sonar at depth 5 m. Figure 4.1 illustrates the surveillance
scenario, showing the towed sonar platform with its trajectory indicated by
an arrow, the seafloor and a the target located near the seafloor. The target,
shown in figure 4.2, is a simplistic model of the Kongsberg HUGIN 1000 AUV
[36]. It is a rigid (acoustically impenetrable) rotationally symmetric body with
a convex smooth surface with overall length 406 cm and maximal diameter
76 cm. The lengths of the conical nose and tail sections are 125 cm and
116 cm. The target AUV is positioned near the seafloor at (horizontal) range
300 m from the trajectory of the sonar. The orientation of the AUV is parallel
to the sonar trajectory, i.e. the AUV shows its broadside towards the sonar

4.2 The SAFIX model

SAFIX is a tool for modelling and analysis of underwater acoustic surveil-
lance using a moving platform and SAS processing. This section gives a brief
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Figure 4.2: Computational model of the HUGIN 1000 AUV. Length: 406 cm, Max di-
ameter 76 cm.

overview of the components of SAFIX used in the simulations below.

4.2.1 Underwater medium

The medium is modelled as a range-independent water layer, with piecewise
constant soundspeed as function of depth. The water surface is perfectly re-
flecting sound soft (reflection coefficient R = −1), the seafloor is perfectly
reflecting sound hard (R = 1) and reverberant, with reverberation modelled
by point scatterers as described in 4.2.3 below.

4.2.2 Sound propagation and target scattering

The emitter is treated as a point source, and sound propagation is modelled by
acoustic ray theory [33, Ch. 3]. The sound speed in the water is modelled as a
piecewise constant function of depth z only. Thus each ray path is polygonal
with corners at the boundaries z = zj j = 1, ..., N of the homogeneous water
layers and at the surface of the 3D target. A ray path composed of K linear
segments is then described by a 2(K − 1)-dimensional vector P of coordinates
of the corners on their respective 2D surface. Eigenrays are computed by
minimizing sound travel time T (P ) along the ray as function of P . T (P ) is
a nonlinear function with a band-structured second derivative matrix, and the
minimization problem can be solved efficiently using a trust region method [37]
that makes use of the first and second derivatives of T (P ). Figure 4.3 illustrates
this modelling by showing two types of eigenrays in a ten-layer water column
approximating a linearly decreasing sound speed with depth. The eigenray
types are source - target - receiver and source - target - water surface - receiver,
respectively.
The transfer function Hj(f) from source to receiver j is obtained as the sum
of contributions from eigenrays of the K selected types

Hj(f) =
K∑
k=1

Hkj(f) =
K∑
k=1

αkj ei2πfτkj (4.10)

where τkj is the travel time along ray k and αkj accounts for the amplitude
and phase change induced by change of ray tube area, sound absorption in the
volume, reflections at the target, the surface and the bottom, and passage of
caustic points. The contribution to αkj from a reflection at the target, the
surface or the bottom is modelled by a local plane-wave reflection coefficient
and by the change of the derivative of the ray tube area w.r.t. the launch angles
induced by the reflection. At target reflections, the change of the derivatives
of the ray tube area is a function of the incidence angle and the two principal
radii of curvature of the target surface at the reflection point.
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Figure 4.3: Two types of eigenrays: Source - target - receiver and source - target - wa-
ter surface - receiver, with the parts after target reflection in red and green, respectively.

4.2.3 Bottom reverberation

Bottom reverberation is modelled as the sum of echoes from a large number M
of point reflectors with random strengths Qm and locations rm, m = 1, ...,M
on the seafloor. Neglecting sound speed variations and multipath propagation,
bottom reverberation contributes to the field at receiver j with

P lj(t) =
M∑
m=1

Qm
s(t− τjm)
RjmRm

(4.11)

where Rjm and Rm are the distances from point scatterer m to receiver j and
to the source, respectively, and

τjm =
Rjm +Rm

c
(4.12)

is the travel time from the source to point scatterer m to receiver j. The
strengths Qm of the point reflectors are stochastically independent random
numbers uniformly distributed in [0, q]. The constant q is chosen so that the
total energy Es of the sound backscattered to the source is consistent with
Lambert’s law, stating that the intensity dIs as function of scattering angle θs
of sound scattered by a bottom patch with area dA is

dIs = µIi sin(θi) sin(θs)dA (4.13)

Ii and θi are the intensity and the grazing angle of the incident sound, and µ is
Lambert’s scattering constant, representing the roughness of the seafloor and
the materials and structures below.

From (4.13) follows, assuming the seafloor to be horizontal,

Es ≈
1
2
Eeµβec

∫ t1

t0

sin2 θ(t)
R(t)3

dt (4.14)

where Ee is the energy of the emitted pulse 1 m away from the source, βe
the horizontal width of the emitter lobe, and t0, t1 the minimal and maximal
two-way travel times to the bottom rectangle selected for SAS imaging. R(t)
and θ(t) are the length and the grazing angle of the ray for which the two-way
travel time to the seafloor is t.
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4.2.4 Target shadows

A useful feature of SAS, analoguous to conventional high-resolution systems
such as side-scan and mine-hunting sonars, is that regions of the seafloor shad-
owed by targets give rize to shadows in the SAS image of the bottom reverbera-
tion. Such shadows provide a means of detecting targets near the seafloor with
target-strength to reverberation-level too small for detection using the physical
aperture of the sonar only. Furthermore, the shapes of the shadows have the
high resolution achieved by the SAS processing, and can therefore be used for
target identification.

In SAFIX, target shadows in the bottom reverberation are modelled by
computing, for each target, the boundary of its shadow on the seafloor and
excluding points inside the boundary from the sum (4.11).

4.2.5 SAS image integration

The SAS image is defined by a grid of pixel points (xk, yk, zk) k = 1, ..., L cov-
ering the area of the seafloor selected for SAS imaging, together with complex
pixel values Fk associated with the pixel points. All pixel values are initially
zero, and are subsequently updated after each ping by beamforming focused
at the pixel points. The image updates are obtained by ’back projection’ pro-
cessing, comprised of five steps:

1. The received signals pi(t) i = 1, ...,K are sampled at time-points covering
the interval of two-way propagation times to the pixel points. Their
Fourier spectra p̂i(f) i = 1, ...,K are computed by FFT.

2. The Fourier spectra of the correlations pci (t) i = 1, ...,K of the signals
pi(t) i = 1, ...,K with the emitted pulse s(t) are computed as the product
of the Fourier spectrum ŝ(f) and p̂i(f) i = 1, ...,K.

3. The (complex-valued) analytic signals pai (t) i = 1, ...,K are computed
by inverse FFT of the one-sided spectra of pci (t) i = 1, ...,K.

4. Coefficients of B-spline expansions p̃ai (t) i = 1, ...,K that interpolate to
pai (t) i = 1, ...,K on t1, ..., tn are computed from a linear system of equa-
tions with band structure and K right-hand-sides. The computational
work for assembling and solving the linear system is O(nK).

5. The pixel values Fk k = 1, ..., L are incremented by

∆Fk =
K∑
i=1

p̃ai (τik) (4.15)

where τik is the source to pixel-point k to receiver i propagation time.

4.3 Simulations

The soundspeed in water is assumed to be 1430 m/s, the cross-track (range)
resolution is then, by equation (4.9), ∆y ≈ c

2B = 0.145 m. Reverberation
is modelled by incoherent bottom scattering according to equations (4.11) -
(4.14), with Lambert’s scattering constant set to 10 log10 µ = −15.

The sonar moves along a 10 m long track, with such vessel speed and ping
repetition frequency that the ping-to-ping movement of the vessel is half the
length of the physical aperture. The target is located close to the seafloor, in
the midpoint normal plane of the sonar track. The size of the SAS image area
is 20 m × 20 m with pixel cell size 10 cm × 10 cm.
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4.3.1 Ideal conditions

Figure 4.4 illustrates SAS processing in the idealized case of a homogeneous
water column with soundspeed 1430 m/s, equal to the value assumed in the
processing. The sound propagation occurs along the direct path only, i.e. in-
terfering reflections from the surface and the bottom are neglected, and the
position and orientation of the sonar are assumed to be exactly known.

The four frames show the pixel values |Fk| in dB as function of (x, y) in a
20 m × 20 m area of the seafloor, after processing of data from 1, 8, 16, and 24
pings, respectively, along the 10 m long trajectory. The corresponding synthetic
aperture lengths are 0.9 m, 3.9 m, 7.4 m, 10.9 m, and the corresponding along-
track (azimuth) resolutions ∆x expected by equations (4.1) - (4.5) are 10.0 m,
2.2 m, 1.2 m, 0.8 m.

The target shadow is invisible in the SAS image after ping 1 where only the
physical aperture has been used, and emerges when the along-track resolution
length ∆x has decreased below ca 4 m, the along-track length of the target.
Here the shadow is clearly recognizable after ping 8, and then becomes succes-
sively sharper. The cross-track extent of the shadow, ca 5 m, is in agreement
with the diameter of the AUV and the grazing angle of the incident sound.

Figure 4.4: SAS processing under ideal conditions. Target range 300 m, target depth
49.5 m, water depth 50 m, aperture lengths 0.9 m, 3.9 m, 7.4 m and 10.9 m.
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4.3.2 Effects of soundspeed variations and navigation data
errors

In practice surveillance conditions are less well-defined than in the ideal case
considered in Section 4.3.1. The performance of SAS procesing is influenced
by spatial and temporal variations of the soundspeed, multipath propagation
induced by reflections at the surface or the bottom and errors in the data on the
position and orientation of the sonar (navigation data). This section presents
some preliminary results from an investigation of such effects by simulations in
which deviations from the ideal case are introduced in a well known way.

Figure 4.5 illustrates the influence of random errors in the sonar yaw angle
data on the SAS image after ping 24, i.e. with synthetic aperture length 10.9 m
as in the lower right frame of figure 4.4. All scenario parameters are the same
as in the ideal case shown in figure 4.4, except for the yaw angle of the sonar
which deviates randomly and uncorrelatedly from ping to ping around the value
zero assumed in the SAS processing.

Figure 4.5: Influence of sonar yaw angle error on the SAS image in the lower right-hand
frame of figure 4.4.

A random yaw-angle error with standard deviation ∆φ induces a random
error into the along-track coordinate (the x coordinate) of the updates of the
SAS image. The standard deviation of this error is approximately

∆x = y∆φ
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where y = 300 m is the target range. In the four frames of figure 4.5 ∆x
is 1.0 m, 4.0 m, 8.4 m and 15.2 m, respectively, causing a corresponding loss
of resolution in the SAS image. It is interesting to note, however, that both
the target and the shadow are vaguely visible also in the lower right frame
(standard deviation ∆φ = 1.73◦), as opposed the upper left frame of figure 4.4
where data from a single ping only was used.

The effect on the SAS image of random variations of the sound speed is
illustrated in figure 4.7. The water column is modelled as ten homogeneous
layers, of varying thickness and sound speeds

cj = c+ δj j = 1, ..., 10

c = 1430 m/s is the sound speed assumed in the SAS processing, and δj , j =
1, ..., 10 are uncorrelated zero-mean random sound speed increments. In the
cases shown in figure 4.7 these increments were not updated between pings, i.e.
the soundspeed is modelled to vary randomly with depth with a correlation
length of ca 3-4 m, and with time on a time-scale longer than the duration
of the SAS run. The layer structure of the medium is shown in 4.6, together
with an example of the non-linear sound propagation paths obtained with the
standard deviation of the sound speed increments equal to 11.55 m/s.

Figure 4.6: Rays from source to target to receiver in a water column with random
variations of the soundspeed as function of depth.

The effects of such sound speed variations are seen from figure 4.7 to be
reduction of both the along-track and the cross-track resolutions, and possibly
(depending on the average soundspeed along the propagation paths) a displace-
ment of the target in range. The degradation of the cross-track resolution with
increasing variance of the sound speed increments causes the target echo to be
lost in the lower right frame, whereas the target shadow remains clearly visible
in all frames due to its longer cross-track length.
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Figure 4.7: Influence of random variations in the sound speed as function of depth on
the SAS image in the lower right-hand frame of figure 4.4.
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5 Conclusions
Several sonar processing methods with a focus on reverberation-limited under-
sea environments have been investigated in this report.

Firstly, two methods for whitening of reverberation noise have been stud-
ied using simulated and sea trial data. In the first method the matched filter
receiver was tuned for each range-bin using an estimate of the reverberation
covariance matrix, and the tuned filter was subsequently applied to the follow-
ing range-bin. It was shown to provide slightly better detection performance
on a set of simulated data, but at a very large cost in the form of calculations.
The second method was based on autoregressive (AR) modelling of the rever-
beration noise in a range-bin, and – similarly – the AR coefficients were then
used to whiten the reverberation in a following range-bin. The AR modelling
was applied to experiment data from the BAROC sea trial of 2002. Detection
performance was improved significantly using the AR whitening, and it was
achieved at a fairly low computational cost.

Secondly, the overall performance of the investigated STAP algorithms were
very inspiring. Especially the derived modified conjugate gradient approach is
very attractive since it seems to offer good adaptive performance with complex-
ity in parity with that of the conventional processor. To further investigate the
possibility of using this technique for underwater surveillance purposes it is
necessary to explore real data to identify over how many adjacent range-bins
the interference properties can be considered stationary. To further improve
the reverberation mitigation, it would also be of interest to study means to in-
corporate prior knowledge, obtained from physical models, into the estimation
of the interference covariance matrix, see [21].

Finally the simulation study undertaken here indicates that SAS processing
under ideal conditions improves the target detection and identification perfor-
mance of mobile active sonars such as a 25 kHz VDS. The improved perfor-
mance arises from the high azimuthal resolution achievable with SAS, enabling
more accurate and informative mapping of the surveyed scene, including higher
resolution of multiple targets, detection of target shadows in the bottom rever-
beration, and resolution of the shapes of such shadows.

Under less idealized conditions the performance of SAS deteriorates due
to errors in sonar navigation data, unknown variations of the soundspeed as
function of range and depth, and other environmental effects such as multipath
propagation and reflections from the surface and the bottom. The limited
simulation results presented here suggest, however, that SAS processing can
to some degree improve surveillance performance also in the presence of such
complications. A more extensive simulation study would therefore be highly
motivated, with the purpose to quantify the applicability of long-range low-
frequency SAS in terms of parameters of the sonar, the navigation system and
the environment.
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